Bài toán về phép chia có dư ở khối 3

Bài toán về phép chia có dư ở khối 3

BÀI TOÁN VỀ PHÉP CHIA

CÓ DƯ Ở LỚP 3

Ở lớp 3 học sinh được học về phép chia có dư, cách thực hiện phép chia có dư, mối quan hệ giữa số dư và số chia. Trong quá trình luyện tập, thực hiện về phép chia có dư học sinh được làm quen với phép chia có dư. Việc giải bài toán này không có gì khác biệt so với “giải bài toán về phép chia hết”. Do đặc điểm của cách diễn đạt về phép chia nên cách trình bài giải có khác nhau.

Ví dụ 1 : Có 31 mét vải, may mỗi bộ quần áo hết 3 mét vải. Hỏi có thể may được nhiều nhất bao nhiêu bộ quần áo như thế và còn thừa mấy mét vải ?

Bài giải : Thực hiện phép chia ta có : 31 : 3 = 10 (dư1). Vậy có thể may được nhiều nhất là 10 bộ quần áo như thế và còn thừa 1 mét vải.

Đáp số : 10 bộ, thừa 1 mét vải. Trong bài giải có hai điểm khác với việc trình bày bài giải bài toán đơn là : Kết quả của phép tính không ghi tên đơn vị, câu trả lời đặt sau phép tính.

 

doc 3 trang Người đăng hang30 Lượt xem 562Lượt tải 0 Download
Bạn đang xem tài liệu "Bài toán về phép chia có dư ở khối 3", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
BÀI TOÁN VỀ PHÉP CHIA 
CÓ DƯ Ở LỚP 3
Ở lớp 3 học sinh được học về phép chia có dư, cách thực hiện phép chia có dư, mối quan hệ giữa số dư và số chia. Trong quá trình luyện tập, thực hiện về phép chia có dư học sinh được làm quen với phép chia có dư. Việc giải bài toán này không có gì khác biệt so với “giải bài toán về phép chia hết”. Do đặc điểm của cách diễn đạt về phép chia nên cách trình bài giải có khác nhau. 
Ví dụ 1 : Có 31 mét vải, may mỗi bộ quần áo hết 3 mét vải. Hỏi có thể may được nhiều nhất bao nhiêu bộ quần áo như thế và còn thừa mấy mét vải ? 
Bài giải : Thực hiện phép chia ta có : 31 : 3 = 10 (dư1). Vậy có thể may được nhiều nhất là 10 bộ quần áo như thế và còn thừa 1 mét vải. 
Đáp số : 10 bộ, thừa 1 mét vải. Trong bài giải có hai điểm khác với việc trình bày bài giải bài toán đơn là : Kết quả của phép tính không ghi tên đơn vị, câu trả lời đặt sau phép tính. 
Ví dụ 2 : Một lớp học có 33 học sinh. Phòng học của lớp đó chỉ có loại bàn 2 chỗ ngồi. Hỏi cần có ít nhất bao nhiêu bàn học như thế ? 
Bài giải : 
Thực hiện phép chia ta có : 33 : 2 = 16 (dư 1). Số bàn có 2 học sinh ngồi là 16 bàn, còn 1 học sinh chưa có chỗ ngồi nên cần có thêm 1 bàn nữa. 
Vậy cần số bàn ít nhất là : 
16 + 1 = 17 (cái bàn) 
Đáp số: 17 cái bàn. 
Trong bài giải này ngoài phép tính chia có dư, còn có phép cộng kết quả phép chia đó với 1 (cần lưu ý học sinh : số 1 này không phải là số dư). 
Ví dụ 3 : Đoàn khách du lịch có 50 người, muốn thuê xe loại 4 chỗ ngồi. Hỏi cần thuê ít nhất bao nhiêu xe để chở hết số khách đó ? 
Bài giải : 
Thực hiện phép chia ta có : 50 : 4 = 12 (dư 2). Có 12 xe mỗi xe chở 4 người khách, còn 2 người khách chưa có chỗ nên cần có thêm 1 xe nữa. 
Vậy số xe cần ít nhất là : 
12 + 1 = 13 (xe). 
Đáp số : 13 xe ô tô. 
Ví dụ 4 : Cần có ít nhất bao nhiêu thuyền để chở hết 78 người của đoàn văn công qua sông, biết rằng mỗi thuyền chỉ ngồi được nhiều nhất là 6 người, kể cả người lái thuyền ? 
Bài giải : 
Mỗi thuyền chỉ chở được số khách nhiều nhất là : 
6 - 1 = 5 (người) 
Thực hiện phép chia ta có : 78 : 5 = 15 (dư 3). Có 15 thuyền, mỗi thuyền chở 5 người khách, còn 3 người khách chưa có chỗ ngồi nên cần có thêm 1 thuyền nữa. 
Vậy số thuyền cần có ít nhất là : 
15 + 1 = 16 (thuyền). 
Đáp số : 16 thuyền. 
Trong 4 ví dụ trên câu hỏi của bài toán về phép chia có dư đều có thuật ngữ “nhiều nhất” hoặc “ít nhất”. Tuy nhiên cũng có bài toán về phép chia có dư mà không cần có các thuật ngữ đó. 
Ví dụ 5 : Năm nhuận có 366 ngày. Hỏi năm đó gồm bao nhiêu tuần lễ và mấy ngày ? 
Bài giải : 
Một tuần lễ có 7 ngày. 
Thực hiện phép chia ta có : 366 : 7 = 52 (dư 2). Vậy năm nhuận gồm 52 tuần lễ và 2 ngày. 
Đáp số : 52 tuần lễ và 2 ngày. 
Ví dụ 6 : Hôm nay là chủ nhật. Hỏi 100 ngày sau sẽ là thứ mấy của tuần lễ ? 
Bài giải : 
Một tuần lễ có 7 ngày. 
Thực hiện phép chia ta có : 100 : 7 = 14 (dư 2). Sau đúng 14 tuần lại đến ngày chủ nhật và hai ngày sau là ngày thứ ba. Vậy 100 ngày sau là ngày thứ ba trong tuần lễ. 
Đáp số : ngày thứ ba. 
Xin giới thiệu cùng bạn đọc tham khảo một bài toán hay trong Kì thi Olympic Đông Nam á năm 2003 (Toán Tuổi thơ số 40) : 
Bài toán : Một xe buýt cỡ vừa có thể chở 30 hành khách, một xe buýt cỡ nhỏ có thể chở 8 hành khách, một xe buýt cỡ lớn có thể chở 52 hành khách. Hỏi cần bao nhiêu xe buýt cỡ lớn để chở được tất cả hành khách của 8 xe buýt cỡ vừa đầy hành khách và 13 xe buýt cỡ nhỏ đầy hành khách ? 
Đỗ Trung Hiệu
(Hà Nội)

Tài liệu đính kèm:

  • docBai 15 (Lớp 3).doc