Giáo án bồi dưỡng học sinh giỏi lớp 5 - Chuyên đề 1: Các bài toán về số và chữ số

Giáo án bồi dưỡng học sinh giỏi lớp 5 - Chuyên đề 1: Các bài toán về số và chữ số

I. MỤC TIÊU:

- Nắm vững kiến thức về số tự nhiờn.

- Biết và thực hiện được các dạng toán sau:

Dạng 1: Viết số tự nhiên từ những số cho trước (2 loại )

Loại 1: Viết STN từ những chữ số cho trước

Loại 2: Xoá một số chữ số của STN để được STN mới

Dạng 2: Các bài toán giải bằng phân tích số (5 loại)

Loại 1: Viết thêm một số chữ số vào bên phải, bên trái hoặc xen giữa một STN

Loại 2: Xoá bớt một số chữ số của STN

Loại 3: Các bài toán về STN và tổng cỏc chữ số của nú.

Loại 4: Các bài toán về STN và hiệu các chữ số của nó

Loại 5: Các bài toán về STN và tích các chữ số của nó

 

doc 9 trang Người đăng hang30 Lượt xem 547Lượt tải 4 Download
Bạn đang xem tài liệu "Giáo án bồi dưỡng học sinh giỏi lớp 5 - Chuyên đề 1: Các bài toán về số và chữ số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
GIÁO ÁN BỒI DƯỠNG HỌC SINH GIỎI LỚP 5
CHUYấN ĐỀ 1
CÁC BÀI TOÁN VỀ SỐ VÀ CHỮ SỐ
I. MỤC TIấU: 
- Nắm vững kiến thức về số tự nhiờn.
- Biết và thực hiện được cỏc dạng toỏn sau: 
Dạng 1: Viết số tự nhiên từ những số cho trước (2 loại ) 
Loại 1: Viết STN từ những chữ số cho trước
Loại 2: Xoá một số chữ số của STN để được STN mới
Dạng 2: Các bài toán giải bằng phân tích số (5 loại)
Loại 1: Viết thêm một số chữ số vào bên phải, bên trái hoặc xen giữa một STN
Loại 2: Xoá bớt một số chữ số của STN
Loại 3: Các bài toán về STN và tổng cỏc chữ số của nú.
Loại 4: Các bài toán về STN và hiệu các chữ số của nó
Loại 5: Các bài toán về STN và tích các chữ số của nó
Dạng 3: Những bài toán về xét các chữ số tận cùng của số đó 
II. CHUẨN BỊ
Cõu hỏi và bài tập thuộc dạng sẽ học.
Cỏc kiến thức cú liờn quan.
II. HOẠT ĐỘNG DẠY HỌC:
Hoạt động của thầy
Hoạt động của trũ
I. Những kiến thức về STN cần nắm
 GV gợi ý để HS nhớ và nờu lại 
Dạng 1: Viết số tự nhiên từ những số cho 
trước. 
Loại 1: Viết STN từ những chữ số cho trước
- Cú thể dựng hai chữ số để cho vớ dụ giỳp HS dễ nắm bắt cỏch làm bài. Vớ dụ: Cho hai chữ số 1; 2 và nờu cỏc yờu cầu như bài 1. 
 Bài 1 : Cho bốn chữ số : 0; 3; 8 và 9.
Viết được tất cả bao nhiờu số cú 4 chữ số khỏc nhau từ 4 chữ số đó cho ?
Tỡm số lớn nhất, số nhỏ nhất cú 4 chữ số khỏc nhau được viết từ 4 chữ số đó cho?
Tỡm số lẻ lớn nhất, số chẵn nhỏ nhất cú 4 chữ số khỏc nhau được viết từ 4 chữ số đó cho ?
Bài 2 : Cho 5 chữ số : 0; 1; 2; 3; 4.
a) Hóy viết cỏc số cú 4 chữ số khỏc nhau từ 5 chữ số đó cho ?
b) Tỡm số chẵn lớn nhất, số lẻ nhỏ nhất cú 4 chữ số khỏc nhau được viết từ 5 chữ số đó cho ?
Loại 2: Xoá một số chữ số của STN để được
 STN mới
 Bài 1: Viết liờn tiếp 15 số lẻ đầu tiờn để được một STN. Hóy xúa đi 15 chữ số của STN này mà vẫn giữ nguyờn thứ tự của chỳng để được:
Số lớn nhất
Số bộ nhất
Bài 2: Viết liờn tiếp 10 số chẵn khỏc 0 đầu tiờn để được một STN. Hóy xúa đi 10 chữ số của nú mà vẫn giữ nguyờn thứ tự của chỳng để được số lớn nhất, số bộ nhất?
Dạng2: Các bài toán giải bằng phân tích 
số (cú 5 loại) Kiến thức cần nhớ:
Loại 1: Viết thêm một số chữ số vào bên trái, bờn phải hoặc xen ở giữa một STN.
Bài 1: Tỡm 1 số TN cú 2 chữ số, biết rằng nếu viết thờm chữ số 9 vào bờn trỏi số đú ta được một số lớn gấp 13 lần số đó cho ?
Bài 2: Tỡm một số cú 3 chữ số, biết rằng khi viết thờm chữ số 5 vào bờn phải số đú thỡ nú tăng thờm 1112 đơn vị.
Bài 3. Tỡm một STN cú hai chữ số, biết nếu viết thờm chữ số 0 vào giữa hai số thỡ số đú tăng lờn 10 lần; nếu viết thờm chữ số 1 vào bờn trỏi số vừa nhận thỡ nú gấp lờn 3 lần.
Bài 4: 
a) Tỡm một số cú 2 chữ số, biết rằng khi viết thờm số 21 vào bờn trỏi số đú ta được một số lớn gấp 31 lần số phải tỡm.
b) Tìm một số có 2 chữ số, biết rằng khi viết thêm chữ số 9 vào bên trái số đó ta được một số lớn gấp 26 lần số phải tìm.
Bài 5: Tỡm một số cú 2 chữ số, biết rằng khi viết thờm chữ số 5 vào bờn phải số đú ta được số mới lớn hơn số phải tỡm là 230 đơn vị.
Bài 6: Tìm một số có 3 chữ số, biết rằng viết thêm chữ số 0 xen giữa chữ số hàng trăm và hàng chục ta được một số lớn gấp 7 lần số đó.
Loại 2: Xoá bớt một số chữ số của STN
Bài 1: Khi xúa đi chữ số hàng chục và hàng đơn vị của một stn cú 4 chữ số, số đú giảm đi 4455 đơn vị. Tỡm số đú?
Bài 2 Tìm stn có 4 chữ số, biết rằng nếu ta xoá đi chữ số hàng chục và hàng đơn vị thì ta được số nhỏ hơn số đó 3663 đơn vị.
Bài 3 Cho số có 3 chữ số.Nếu ta xoá đi chữ số hàng trăm thì số đó giảm đi 5 lần. Tìm số đó.
Bài 4 Tìm số có 3 chữ số, biết rằng khi ta xoá chữ số hàng trăm thì số đó giảm đi 9 lần.
Bài 5 Tìm số có 4 chữ số, biết rằng khi ta xoá chữ số hàng nghìn thì số đó giảm đi 9 lần.
Loại 3: Cỏc bài toỏn về stn và tổng cỏc chữ số của nú
Bài 1: Tỡm một số cú hai chữ số, biết số đú gấp 5 lần tổng cỏc chữ số của nú.
Bài 2: Tỡm một số cú hai chữ số, biết lấy số đú chia cho tổng cỏc chữ số của nú, ta được thương bằng 5 và dư 12.
Bài 3 Tìm số có 2 chữ số, biết rằng số đó lớn hơn 6 lần tổng các chữ số của nó.
Bài 4 Cho số có 2 chữ số. Nếu lấy số đó chia cho tổng các chữ số của nó được thương là 5 dư 12. Tìm số đó.
Bài 5 Tìm số có 3 chữ số, biết rằng khi chia số đó cho tổng các chữ số của nó ta được thương là 11.
Loại 4: Các bài toán về STN và hiệu các chữ số của nó
Bài 1: Tỡm một số cú hai chữ số, biết số đú gấp 21 lần hiệu của chữ số hàng chục trừ đi chữ số hàng đơn vị.
Bài 2: Tỡm một số cú hai chữ số, biết số đú chia cho hiệu cỏc chữ số của nú được thương bằng 28 dư 1.
Bài 3 Tìm số có 2 chữ số, biết rằng nếu lấy số đú chia cho hiệu của chữ số hàng chục và hàng đơn vị, ta được thương là 26 dư 1. 
Loại 5: Các bài toán về STN và tích các chữ số của nó
Bài 1: Tỡm một số cú hai chữ số, biết số đú lớn gấp 3 lần tớch cỏc chữ số của nú. 
Bài 2: Tỡm một số cú hai chữ số, biết lấy số đú chia cho tớch cỏc chữ số của nú được thương là 5 dư 2 và số đú cú chữ số hàng chục gấp 3 lần chữ số hàng đơn vị.
Dạng 3: Những bài toán về số chẵn, số lẻ và xét các chữ số tận cùng của số đó 
 Kiến thức cần nhớ:
Bài 1: 
a) Nếu tổng của 2 số tự nhiờn là 1 số lẻ, thỡ tớch của chỳng cú thể là 1 số lẻ được khụng?
b) Nếu tớch của 2 số tự nhiờn là 1 số lẻ, thỡ tổng của chỳng cú thể là 1 số lẻ được khụng?
c) “Tổng” và “hiệu” hai số tự nhiờn cú thể là số chẵn, và số kia là lẻ được khụng?
Bài 2: Khụng cần làm tớnh, kiểm tra kết quả của phộp tớnh sau đõy đỳng hay sai?
a, 1783 + 9789 + 375 + 8001 + 2797 = 22744
b, 1872 + 786 + 3748 + 3718 = 10115.
c, 5674 x 163 = 610783	 
Bài 3: 
Khụng làm tớnh, hóy cho biết chữ số tận cựng của mỗi kết quả sau :
a) ( 1991 + 1992 + ...+ 1999 ) – ( 11 + 12 + ...+ 19 ).
b) ( 1981 + 1982 + ...+ 1989 ) ( 1991 + 1992 +....+ 1999 )
c) 21 23 25 27 – 11 13 15 17
Bài 4 : Khụng làm tớnh, hóy xột xem kết quả sau đõy đỳng hay sai ? Giải thớch tại sao ?
a) 136 136 – 42 = 1960
b) - 8557 = 0
Bài 5 : Khụng làm tớnh, hóy cho biết chữ số tận cựng của mỗi kết quả sau :
a) ( 1999 + 2378 + 4545 + 7956 ) – ( 315 + 598 + 736 + 89 )
b) 56 66 76 86 – 51 61 71 81
Bài 6 : Khụng làm tớnh, hóy xột xem kết quả sau đõy đỳng hay sai ? Giải thớch tại sao ?
a) - 853467 = 0
b) 11 21 31 41 – 19 25 37 = 110
Bài 7 Cú số tự nhiờn nào nhõn với chớnh nú được kết quả là một số viết bởi 6 chữ số 1 khụng?
Bài 8 
a, Số 1990 cú thể là tớch của 3 số tự nhiờn liờn tiếp được khụng?
b, Số 1995 cú thể là tớch của 3 số tự nhiờn liờn tiếp khụng?
c, Số 1993 cú phải là tổng của 3 số tự nhiờn liờn tiếp khụng?
Bài 9 
a) Cú thể tỡm được 2 số tự nhiờn sao cho hiệu của chỳng nhõn với 18 được 1989 khụng?
b) Bạn Toàn tớnh tổng cỏc chẵn trong phạm vi từ 20 đến 98 được 2025. Khụng thực hiện tớnh tổng em cho biết Toàn tớnh đỳng hay sai?
c) Tựng tớnh tổng của cỏc số lẻ từ 21 đến 99 được 2025. Khụng tớnh tổng đú em cho biết Tựng tớnh đỳng hay sai?
d) Tiến làm phộp chia 1935 : 9 được thương là 216 và khụng cũn dư. Khụng thực hiện phộp tớnh, cho biết Tiến làm đỳng hay sai?
đ) Huệ tớnh tớch của: 2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 = 3 999
 Khụng tớnh tớch, em cho biết Huệ tớnh đỳng hay sai?
Bài 10 Tỡm chữ số 0 tận cựng của tớch
a) Tớch 1 x 2 x 3 x  98 x 99 x 100 tận cựng là bao nhiờu chữ số 0.
b) Tớnh 1 x 2 x 3 x 4 x 5 x ... x 48 x 49 tận cựng là bao nhiờu chữ số 0?
c) Tớch sau tận cựng bằng mấy chữ số 0?
	20 x 21 x 22 x 23 x . . . x 28 x 29 
d)Tớch sau tận cựng bằng bao nhiờu chữ số 0 :
	13 x 14 x 15 x . . . x 22 	
1) Trong hai số TN, số nào cú chữ số nhiều hơn thỡ lớn hơn.
2) Nếu hai số cú cựng chữ số thỡ số nào cú chữ số đầu tiờn kể từ trỏi sang phải lớn hơn thỡ số đú lớn hơn.
3) Số tự nhiờn cú tận cựng bằng 0 ; 2; 4;....;8 là cỏc số chẵn.
4) Số TN cú tận cựng bằng 1;3 ;5;...;9 là cỏc số lẻ.
5) Hai số TN liờn tiếp hơn ( kộm ) nhau 1 đơn vị. Hai số hơn ( kộm ) nhau 1 đơn vị là hai số tự nhiờn liờn tiếp.
6) Hai số chẵn liờn tiếp hơn ( kộm ) nhau 2 đơn vị. Hai số chẵn hơn ( kộm ) nhau 2 đơn vị là hai số chẵn liờn tiếp.
7) Hai số lẻ liờn tiếp hơn ( kộm ) nhau 2 đơn vị. Hai số lẻ hơn ( kộm ) nhau 2 đơn vị là hai số chẵn liờn tiếp.
Kiến thức cần nhớ: Cú 10 chữ số là 0 ; 1; 2; 3; 4..; 9. Khi viết một số tự nhiờn ta sử dụng mười chữ số trờn. Chữ số đầu tiờn kể từ bờn trỏi của một số TN phải khỏc 0.
1. 
a) Lần lượt chọn cỏc chữ số nghỡn, hàng trăm, hàng chục và hàng đơn vị như sau:
- Cú 3 cỏch chọn chữ số hàng nghỡn của số thoả món điều kiện của đầu bài ( vỡ số 0 khụng thể đứng ở vị trớ hàng nghỡn ).
- Cú 3 cỏch chọn chữ số hàng trăm ( đú là 3 chữ số cũn lại khỏc chữ số hàng nghỡn )
- Cú 2 cỏch chọn chữ số hàng chục ( đú là 2 chữ số cũn lại khỏc chữ số hàng nghỡn và hàng trăm cũn lại )
- Cú 1 cỏch chọn chữ số hàng đơn vị ( đú là 1 chữ số cũn lại khỏc chữ số hàng nghỡn , hàng trăm , hàng chục )
Vậy cỏc số được viết là:
 3 3 2 1 = 18 ( số )
b) Số lớn nhất cú 4 chữ số khỏc nhau được viết từ 4 chữ số đó cho phải cú chữ số hàng nghỡn là chữ số lớn nhất ( trong 4 chữ số đó cho ). Vậy chữ số hàng nghỡn phải tỡm bằng 9.
Chữ số hàng trăm phải là chữ số lớn nhất trong 3 chữ số cũn lại. Vậy chữ số hàng trăm bằng 8.
Chữ số hàng chục là số lớn nhất trong hai chữ số cũn lại. Vậy chữ số hàng chục là 3.
Số phải tỡm là 9830.
Tương tự số bộ nhất thoả món điều kiện của đầu bài là 3089.
c) Tương tự số lẻ lớn nhất thoả món điều kiện của đầu bài là : 9803
 Số chẵn nhỏ nhất thoả món điều kiện của đầu bài là : 3098.
(Bài 2 cho HS luyện tập)
1. a) Số tự nhiờn theo đề cho là: 
1357911131517192123252729
Xúa lần 1 (4 số gạch chõn)
Xúa lần 2 (9 số) và lần 3 (2 số)
Ta cú số lớn nhất: 9923252729
b) 1357911131517192123252729
Xúa như gạch chõn được số bộ nhất là: 1111111122
(Bài 2 cho HS luyện tập)
= a 10 + b
 = a 100 + b 10 + c = 10 + c
 = a 1000 + b 100 + c 10 + d
 = 10+d = 100 + 
 = x 1000 + 
1. Gọi số phải tỡm là . Viết thờm chữ số 9 vào bờn trỏi ta được số . Theo bài ra ta cú :
= 13
900 + = 13
 900 = 13 - 
 900 = ( 13 – 1 )
 900 = 12
 = 900 : 12
 = 75 Vậy số phải tỡm là 75.
2. Gọi số phải tỡm là . Khi viết thờm chữ số 5 vào bờn phải ta được số 
Theo bài ra ta cú:
 = + 1112
10 + 5 = + 1112
10 = + 1112 – 5
10 - = 1107
( 10 – 1 ) = 1107
9 = 1107
 = 1107 : 9
 = 123 Vậy số phải tỡm là 123.
3. Gọi số cần tỡm là ab. Theo đề: a0b = ab x 10 
Vỡ ab x 10 cú tận cựng là 0 nờn b=0; Vậy số cần tỡm cú dạng a0. Ta lại cú: 1a00 = a00 x 3
 1000 + a00 = a00 x 3
 1000 = 3 x a00 – a00
 1000 = a00 x (3 – 1)
 1000 = a00 x 2
 => a00 = 500 Vậy a = 5; Số cần tỡm là ab = 50
(Cho HS tự làm bài 4, 5, 6)
1. Gọi số đú là abcd. Sau khi xúa ta cũn ab.
Theo đề ta cú: abcd – ab = 4455
 ab x 100 + cd – ab = 4455 
 cd + ab x (100 -1) = 4455
 cd + ab x 99 = 4455
 cd + ab x 99 = 45 x 99
 cd = 45 x 99 – ab x 99
 cd = (45 – ab) x 99
Nhận xột: Tớch của một số nhõn với 99 được 1 số cú hai chữ số, nờn (45 - ab) phải bằng 0 hoặc bằng 1. 
Nếu 45 - ab = 0 thỡ ab = 45 và cd = 00
Nếu 45 – ab = 1 thỡ ab = 44 và cd = 99
Số cần tỡm là: 4500 hoặc 4499
(Cho HS tự làm bài 2, 3, 4, 5)
1. Gọi số cần tỡm là ab. 
Theo đề: ab = 5 x (a+b)
 a x 10 + b = 5 x a + 5 x b
 a x 10 – 5 x a = 5 x b – b
 5 x a = 4 x b (1)
Do 5 x a chia hết cho 5 nờn 4 x b cũng chia hết cho 5. Và b cũng chia hết cho 5 vậy b = 0 hoặc = 5. Từ (1) ta cú:
- Nếu b = 0 thỡ a = 0 (loại do a phải khỏc 0)
- Nếu b = 5 thỡ a = 4 => ab = 45
2. Gọi số cần tỡm là ab. 
Theo đề: ab = 5 x (a + b) + 12
 a x 10 + b = 5 x a + 5 x b + 12
 a x 10 – 5 x a = 5 x b – b + 12
 5 x a = 4 x b + 12 (1)
Do 5 x a phải chia hết cho 4 nờn a = 4 (hoặc = 8). Từ (1) ta cú:
- Nếu a = 4 thỡ b = 2 => ab = 42
- Nếu a = 8 thỡ b = 7 => ab = 87
(Cho HS tự làm bài 3, 4, 5)
1. ab = 21 x (a - b)
 a x 10 + b = 21 x a - 21 x b
 21 x b + b = 21 x a – 10 x a
 22 x b = 11 x a (1)
 Vế 11 x a phải chia hết cho 22,
 nờn a = 2, 4, 6, 8.
Từ (1) nếu:
a = 2 thỡ b = 1 => ab = 21
a = 4 thỡ b = 2 => ab = 42
a = 6 thỡ b = 3 => ab = 63
a = 8 thỡ b = 4 => ab = 84. Đú là 4 số cần tỡm.
2. Gọi số cần tỡm là ab và hiệu của hai chữ số của nú là c. Theo đề ta cú: ab = c x 28 + 1
 Vỡ ab < 100 nờn c x 28 < 99. Vậy c = 1, 2, 3
- Nếu c = 1 thỡ ab = 29
 Thử lại: 9 – 2 = 7; Và 29 : 7 = 4 dư 1 (loại)
- Nếu c = 2 thỡ ab = 57
 Thử lại: 7 – 5 = 2; Và 57 : 2 = 28 dư 1 (đỳng)
- Nếu c = 3 thỡ ab = 85
 Thử lại: 8 – 5 = 3; Và 85 : 3 = 28 dư 1 (đỳng)
Vậy số cần tỡm là 57 hoặc 85
(Cho HS tự làm bài 3)
1. ab = 3 x a x b
 a x 10 + b = 3 x a x b (1)
 Vế 3 x a x b chia hết cho a, mà 10 x a chia hết cho a nờn b chia hết cho a. Xột 2 trường hợp:
- Nếu b = a thỡ 10 x a + a = 3 x a x a (loại)
- Nếu thỡ từ (1) ta cú bảng thử chọn sau:
+ b = 1 thỡ a x 10 + 1 = 3 x a x 1 (loại)
+ b = 2 thỡ a x 10 + 2 = 3 x a x 2 (loại)
+ b = 3 thỡ a x 10 + 3 = 3 x a x 3 (loại)
+ b = 4 thỡ a x 10 + 4 = 3 x a x 4=>a=2; ab = 24
+ b = 5 thỡ a x 10 + 5 = 3 x a x 5=>a=1; ab = 15
+ b = 6,7,8,9 như trờn đều bị loại. 
Vậy số cần tỡm là 24 hoặc 15
2. Gọi số đú là ab. 
Theo đề ta cú: ab = (a x b) x 5 + 2 (1)
Theo đề ta cũng cú a = 3 x b
Vậy số cần tỡm cú thể là: 31, 62, 93
Ta cú bảng thử chọn sau với (1):
Nếu ab = 31 thỡ (3 x 1) x 5 + 2 (loại)
Nếu ab = 62 thỡ (6 x 2) x 5 + 2 (đỳng)
Nếu ab = 93 thỡ (9 x 3) x 5 + 2 (loại)
Vậy số cần tỡm là 62
1.Chữ số tận cùng của một tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy.
2. Chữ số tận cùng của một tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy.
3. Tổng 1 + 2 + 3 +  + 9 có tận cùng bằng 5.
4. Tích 1 x 3 x 5 x 7 x 9 có chữ số tận cùng bằng 5.
5. Tích a x a không thể có tận cùng bằng 2, 3, 7 hoặc 8.
6. 1n có tận cùng bằng 1.
 5n có tận cùng bằng 5.
 9 2n có tận cùng bằng 1.
 9 2n+ 1 có tận cùng bằng 9.
 1 a)	Tổng hai số tự nhiờn là một số lẻ, như vậy tổng đú gồm 1 số chẵn và 1 số lẻ, do đú tớch của chỳng phải là 1 số chẵn (Khụng thể là một số lẻ được).
 b) Tớch hai số tự nhiờn là 1 số lẻ, như vậy tớch đú gồm 2 thừa số đều là số lẻ, do đú tổng của chỳng phải là 1 số chẵn (Khụng thể là một số lẻ được). 
 c) Lấy “Tổng” cộng với “hiệu” ta được 2 lần số lớn, tức là được 1 số chẵn. Vậy “tổng” và “hiệu” phải là 2 số cựng chẵn hoặc cựng lẻ (Khụng thể 1 số là chẵn, số kia là lẻ được).
2
a, Kết quả là sai vỡ tổng của 5 số lẻ là 1 số lẻ.
b, Kết quả là sai vỡ tổng của cỏc số chẵn là 1 số chẵn.
c, Kết quả là sai vỡ tớch của 1số chẵn với bất kỳ 1 số nào cũng là một số chẵn.
3
a) Chữ số tận cựng của tổng : ( 1991 + 1992 + ...+ 1999 ) và ( 11 + 12 + .....+ 19 ) đều bằng chữ số tận cựng của tổng 1+ 2 + 3 + .....+ 9 và bằng 5. Cho nờn hiệu đú cú tận cựng bằng 0.
b) Tương tự phần a, tớch đú cú tận cựng bằng 5.
c) Chữ số tận cựng của tớch 21 23 25 27 và 11 13 15 17 dều bằng chữ số tận cựng của tớch 1 3 5 7 và bằng 5. Cho nờn hiệu trờn cú tận cựng bằng 0.
4
a) Kết quả sai, vỡ tớch của 136 136 cú tận cựng bằng 6 mà số trừ cú tận cựng bằng 2 nờn hiệu khụng thể cú tận cựng bằng 0.
b) Kết quả sai, vỡ tớch của một số TN nhõn với chớnh nú cú tận cựng là một trong cỏc chữ số 0; 1; 4; 5; 6 hoặc 9.
(HS tự làm bài 5 và 6)
7.
Gọi số phải tỡm là A (A > 0 )
	Ta cú :	A x A = 111 111 
Vỡ 1 + 1 +1 + 1+ 1+ 1+ = 6 chia hết cho 3 nờn 111 111 chia hết cho 3. 
Do vậy A chia hết cho 3, mà A chia hết cho 3 nờn A x A chia hết cho 9 nhưng 111 111 khụng chia hết cho 9. Vậy khụng cú số nào như thế .
8
a. Tớch của 3 số tự nhiờn liờn tiếp thỡ chia hết cho 3 vỡ trong 3 số đú luụn cú 1 số chia hết cho 3 nờn 1990 khụng là tớch của 3 số tự nhiờn liờn tiếp vỡ : 1+9+9+0 = 19 khụng chia hết cho 3.
b. 3 số tự nhiờn liờn tiếp thỡ bao giờ cũng cú 1 số chẵn vỡ vậy mà tớch của chỳng là 1 số chẵn mà 1995 là 1 số lẻ do vậy khụng phải là tớch của 3 số tự nhiờn liờn tiếp.
c. Tổng của 3 số tự nhiờn liờn tiếp thỡ sẽ bằng 3 lần số ở giữa do đú số này phải chia hết cho 3.
Mà 1993 = 1 + 9 + 9 + 3 = 22 Khụng chia hết cho 3. 	Nờn số 1993 khụng là tổng của 3 số tự nhiờn liờn tiếp.
9 
a) Ta thấy số nào nhõn với số chẵn tớch cũng là 1 số chẵn. 18 là số chẵn mà 1989 là số lẻ.
Vỡ vậy khụng thể tỡm được 2 số tự nhiờn mà hiệu của chỳng nhõn với 18 được 1989.
b) Tổng cỏc số chẵn là 1 số chẵn, kết quả toàn tớnh được 2025 là số lẻ do vậy toàn đó tớnh sai.
c) Từ 1 đến 99 cú 50 số lẻ. Mà từ 1 đến 19 cú 10 số lẻ. Do vậy Tựng tớnh tổng của số lượng cỏc số lẻ là : 50 – 10 = 40 (số)
Ta đó biết tổng của số lượng chẵn cỏc số lẻ là 1 số chẵn mà 2025 là số lẻ nờn Tựng đó tớnh sai.
d) Vỡ 1935 và 9 đều là số lẻ, thương giữa 2 số lẻ là 1 số lẻ. Thương mà Tiến tỡm được là 216 là một số chẵn nờn sai.
đ) Trong tớch trờn cú 1 thừa số là 5 và 1 thừa số chẵn nờn tớch phải tận cựng bằng chữ số 0. Vỡ vậy Huệ đó tớnh sai.
a) 
- Thừa số trũn chục 10, 20, ..., 90. Nhúm này tạo ra 8 chữ số 0 ở tớch. (trừ ra số 50)
- Thừa số tận cựng là 5, 15, 35, 45, 55, 65, 85, 95 khi nhõn với 1 số chẵn cho 1 số 0 ở tớch. Vậy nhúm này tạo ra 8 chữ số 0 ở tớch.
- Nhúm 3 thừa số 25, 50, 75 khi nhõn với một số chia hết cho 4 thỡ cho 2 chữ số 0 tận cựng ở tớch. Vậy nhúm này tạo ra 6 chữ số 0.
- Thừa số 100 cú 2 chữ số 0 ở tớch.
Vậy tớch cú : 8 + 8 + 6 + 2 = 24 (chữ số 0 tận cựng )
 ( Bài b và c, học sinh tự làm)
d) Trong tớch trờn cú thừa số 20 là số trũn chục nờn tớch tận cựng bằng 1 chữ số 0. Thừa số 15 khi nhõn với 1 số chẵn cho 1 chữ số 0 nữa ở tớch. Vậy tớch trờn cú 2 chữ số 0.

Tài liệu đính kèm:

  • docGIAO AN BOI DUONG HS GIOI CHUYEN DE 1.doc