Giáo án bồi dưỡng Toán 5 - Tuần 22

Giáo án bồi dưỡng Toán 5 - Tuần 22

I. CHUẨN BỊ:

- Câu hỏi và bài tập thuộc dạng vừa học.

- Các kiến thức có liên quan.

II. CÁC HOẠT ĐỘNG DẠY HỌC

 1/ Ổn định tổ chức lớp.

 2/ Kiểm tra bài cũ.

 - Gọi học sinh làm bài tập về nhà hôm trước, GV chữa.

 3/ Giảng bài mới: GV gợi ý HS nắm được :

a./ Kiến thức cần nhớ :

- Chữ số tận cùng của 1 tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy.

- Chữ số tận cùng của 1 tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy.

- Tổng 1 + 2 + 3 + 4 + . + 9 có chữ số tận cùng bằng 5.

- Tích 1 x 3 x 5 x 7 x 9 có chữ số tận cùng bằng 5.

b./ Bài tập vận dụng :GV hướng dẫn học sinh làm một số bài tập sau:

 

doc 88 trang Người đăng hang30 Lượt xem 519Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án bồi dưỡng Toán 5 - Tuần 22", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TUẦN 22
MỤC TIÊU:
- HS nắm được dạng toán về : Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số và các bước giải dạng toán này.
- Làm được một số bài tập nâng cao.
- Rèn kỹ năng tính toán cho học sinh .
Thứ 2 ngày 28 tháng 1 năm 2013
I. CHUẨN BỊ: 
Câu hỏi và bài tập thuộc dạng vừa học.
Các kiến thức có liên quan.
II. CÁC HOẠT ĐỘNG DẠY HỌC	
 1/ Ổn định tổ chức lớp.
 2/ Kiểm tra bài cũ.
 - Gọi học sinh làm bài tập về nhà hôm trước, GV chữa.
 3/ Giảng bài mới: GV gợi ý HS nắm được : 
a./ Kiến thức cần nhớ :
- Chữ số tận cùng của 1 tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy.
- Chữ số tận cùng của 1 tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy.
- Tổng 1 + 2 + 3 + 4 + ...... + 9 có chữ số tận cùng bằng 5.
- Tích 1 x 3 x 5 x 7 x 9 có chữ số tận cùng bằng 5.
b./ Bài tập vận dụng :GV hướng dẫn học sinh làm một số bài tập sau:
Bài 1: 
a) Nếu tổng của 2 số tự nhiên là 1 số lẻ, thì tích của chúng có thể là 1 số lẻ được không?
b) Nếu tích của 2 số tự nhiên là 1 số lẻ, thì tổng của chúng có thể là 1 số lẻ được không?
c) “Tổng” và “hiệu” hai số tự nhiên có thể là số chẵn, và số kia là lẻ được không?
Giải :
 a)	Tổng hai số tự nhiên là một số lẻ, như vậy tổng đó gồm 1 số chẵn và 1 số lẻ, do đó tích của chúng phải là 1 số chẵn (Không thể là một số lẻ được).
 b) Tích hai số tự nhiên là 1 số lẻ, như vậy tích đó gồm 2 thừa số đều là số lẻ, do đó tổng của chúng phải là 1 số chẵn(Không thể là một số lẻ được). 
 c) Lấy “Tổng” cộng với “hiệu” ta được 2 lần số lớn, tức là được 1 số chẵn. Vậy “tổng” và “hiệu” phải là 2 số cùng chẵn hoặc cùng lẻ (Không thể 1 số là chẵn, số kia là lẻ được).
Bài 2 : Không cần làm tính, kiểm tra kết quả của phép tính sau đây đúng hay sai?
a, 1783 + 9789 + 375 + 8001 + 2797 = 22744
b, 1872 + 786 + 3748 + 3718 = 10115.
c, 5674 x 163 = 610783
Giải :
a, Kết quả trên là sai vì tổng của 5 số lẻ là 1 số lẻ.
b, Kết quả trên là sai vì tổng của các số chẵn là 1 số chẵn.
c, Kết quả trên là sai vì tích của 1số chẵn với bất kỳ 1 số nào cũng là một số chẵn.
Bài 3 : Tìm 4 số tự nhiên liên tiếp có tích bằng 24 024
Giải :
	Ta thấy trong 4 số tự nhiên liên tiếp thì không có thừa số nào có chữ số tận cùng là 0; 5 vì như thế tích sẽ tận cùng là chữ số 0 (trái với bài toán)
Do đó 4 số phải tìm chỉ có thể có chữ số tận cùng liên tiếp là 1, 2, 3, 4 và 6, 7, 8, 9
	Ta có : 
	24 024 > 10 000 = 10 x 10 x 10 x 10 
	24 024 < 160 000 = 20 x 20 x 20 x 20
Nên tích của 4 số đó là :
	11 x 12 x 13 x 14 hoặc 
 16 x 17 x 18 x 19
Có : 11 x 12 x 13 x 14 = 24 024 
 16 x 17 x 18 x 19 = 93 024.
Vậy 4 số phải tìm là : 11, 12, 13, 14.
c./ Bài tập về nhà:GV yêu cầu HS về nhà làm 2 bài tập sau:
Bài 1 : Có thể tìm được 2 số tự nhiên sao cho hiệu của chúng nhân với 18 được 1989 không?
Bài 2 : Có thể tìm được 1 số tự nhiên nào đó nhân với chính nó rồi trừ đi 2 hay 3 hay 7, 8 lại được 1 số tròn chục hay không.
.................................................................................................................................
Thứ 3 ngày 29 tháng 1 năm 2013
I. CHUẨN BỊ: 
- Câu hỏi và bài tập thuộc dạng: Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số vừa học.
- Các kiến thức có liên quan.
II. CÁC HOẠT ĐỘNG DẠY HỌC	
 1/ Ổn định tổ chức lớp.
 2/ Kiểm tra bài cũ.
- Gọi học sinh làm bài tập về nhà ngày thứ 2- GV chữa
Bài 1: Có thể tìm được 2 số tự nhiên sao cho hiệu của chúng nhân với 18 được 1989 không?
Giải :
	Ta thấy số nào nhân với số chẵn tích cũng là 1 số chẵn. 18 là số chẵn mà 1989 là số lẻ.
	Vì vậy không thể tìm được 2 số tự nhiên mà hiệu của chúng nhân với 18 được 1989.
Bài 2 : Có thể tìm được 1 số tự nhiên nào đó nhân với chính nó rồi trừ đi 2 hay 3 hay 7, 8 lại được 1 số tròn chục hay không.
Giải :
Số trừ đi 2,3 hay 7,8 là số tròn chục thì phải có chữ số tận cùng là 2,3 hay 7 hoặc 8.
	Mà các số tự nhiên nhân với chính nó có các chữ số tận cùng là 0 ,1, 4, 5, 6, 9.
Vì : 1 x 1 = 1 4 x 4 = 16 	 7 x 7 = 49 
	 2 x 2 = 4 	 5 x 5 = 25	 8 x 8 = 64
	 3 x3 = 9	 6 x6 = 36	 9 x 9 = 81
	 10 x10 = 100
 3/ Bài mới: GV hướng dẫn học sinh làm một số bài tập sau:
Bài 1: Có số tự nhiên nào nhân với chính nó được kết quả là một số viết bởi 6 chữ số 1 không?
Giải :
	Gọi số phải tìm là A (A > 0 )
	Ta có :	A x A = 111 111 
Vì 1 + 1 +1 + 1+ 1+ 1+ = 6 chia hết cho 3 nên 111 111 chia hết cho 3.
Do vậy A chia hết cho 3, mà A chia hết cho 3 nên A x A chia hết cho 9 nhưng 111 111 không chia hết cho 9.
	Vậy không có số nào như thế .
Bài 2: 
a, Số 1990 có thể là tích của 3 số tự nhiên liên tiếp được không?
Giải :
	Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không là tích của 3 số tự nhiên liên tiếp vì :
	1 + 9 + 9 + 0 = 19 không chia hết cho 3.
b, Số 1995 có thể là tích của 3 số tự nhiên liên tiếp không?
	3 số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp.
c, Số 1993 có phải là tổng của 3 số tự nhiên liên tiếp không?
	Tổng của 3 số tự nhiên liên tiếp thì sẽ bằng 3 lần số ở giữa do đó số này phải chia hết cho 3.
	Mà 1993 = 1 + 9 + 9 + 3 = 22 Không chia hết cho 3
	Nên số 1993 không là tổng của 3 số tự nhiên liên tiếp.
Bài 3 : Tính 1 x 2 x 3 x 4 x 5 x ............ x 48 x 49 tận cùng là bao nhiêu chữ số 0?
Giải :
	Trong tích đó có các thừa số chia hết cho 5 là :
	5, 10, 15, 20, 25, 30, 35, 40, 45.
Hay 5 = 1 x 5 ; 10 = 2 x 5 ; 15 = 3 x 5; ........; 45 = 9 x 5.
	Mỗi thừa số 5 nhân với 1 số chẵn cho ta 1 số tròn chục. mà tích trên có 10 thừa số 5 nên tích tận cùng bằng 10 chữ số 0.
* Bài tập về nhà:GV yêu cầu HS về nhà làm 2 bài tập sau:
Bài 1 : Tùng tính tổng của các số lẻ từ 21 đến 99 được 2025. Không tính tổng đó em cho biết Tùng tính đúng hay sai?
Bài 2 : Tích sau tận cùng bằng mấy chữ số 0?
	20 x 21 x 22 x 23 x . . . x 28 x 29 
.................................................................................................................................
Thứ 4 ngày 30 tháng 1 năm 2013
I. CHUẨN BỊ: 
- Câu hỏi và bài tập thuộc dạng: Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số vừa học.
- Các kiến thức có liên quan.
II. CÁC HOẠT ĐỘNG DẠY HỌC	
 1/ Ổn định tổ chức lớp.
 2/ Kiểm tra bài cũ.
Gọi học sinh làm bài tập về nhà ngày thứ 3- GV chữa
Bài 1 :
Giải :
	Từ 1 đến 99 có 50 số lẻ
	Mà từ 1 đến 19 có 10 số lẻ. Do vậy Tùng tính tổng của số lượng các số lẻ là : 50 – 10 = 40 (số)
Ta đã biết tổng của số lượng chẵn các số lẻ là 1 số chẵn mà 2025 là số lẻ nên Tùng đã tính sai.
Bài 2 
Giải :
	Tích trên có 1 số tròn chục là 20 nên tích tận cùng bằng 1 chữ số 0
Ta lại có 25 = 5 x 5 nên 2 thữa số 5 này khi nhân với 2 só chẵn cho tích tận cùng bằng 2 chữ số 0
	Vậy tích trên tận cùng bằng 3 chữ số 0.
3/. GV hướng dẫn học sinh làm một số bài tập sau:
Bài 1 : Tiến làm phép chia 1935 : 9 được thương là 216 và không còn dư. Không thực hiện phép tính cho biết Tiến làm đúng hay sai.
Giải :
	Vì 1935 và 9 đều là số lẻ, thương giữa 2 số lẻ là 1 số lẻ. Thương Tiến tìm được là 216 là 1 số chẵn nên sai
Bài 2 : Huệ tính tích :
	2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 = 3 999
Không tính tích em cho biết Huệ tính đúng hay sai?
Giải :	
Trong tích trên có 1 thữa số là 5 và 1 thừa số chẵn nên tích phải tận cùng bằng chữ số 0. Vì vậy Huệ đã tính sai.
Bài 3 : Tích sau tận cùng bằng bao nhiêu chữ số 0 :
	13 x 14 x 15 x . . . x 22 
Giải :
	Trong tích trên có thừa số 20 là số tròn chục nên tích tận cùng bằng 1 chữ số 0. Thừa số 15 khi nhân với 1 số chẵn cho 1 chữ số 0 nữa ở tích.
	Vậy tích trên có 2 chữ số 0.
	* 
* Bài tập về nhà:GV yêu cầu HS về nhà làm bài tập sau: 
Bài 4 : Bạn Toàn tính tổng các chẵn trong phạm vi từ 20 đến 98 được 2025. Không thực hiện tính tổng em cho biết Toàn tính đúng hay sai?
................................................................................................................................. 
Thứ 6 ngày 1 tháng 2 năm 2013
CÁC HOẠT ĐỘNG DẠY HỌC
1/ Ổn định tổ chức lớp.
 2/ Kiểm tra bài cũ.
- Gọi học sinh làm bài tập về nhà ngày thứ 4, GV chữa.
Giải :
 Tổng các số chẵn là 1 số chẵn, kết quả Toàn tính được 2025 là số lẻ do vậy Toàn đã tính sai.
 3/Bài mới: a./ Kiến thức cần nhớ
GV gợi ý HS nắm được: Kĩ thuật tính và quan hệ giữa các thành phần của phép tính.
 b/ Bài tập vận dụng : GV hướng dẫn học sinh làm một số bài tập sau:
Bài 1: Khi cộng một số tự nhiên có 4 chữ số với một số tự nhiên có 2 chữ số, do sơ suất một học sinh đã đặt phép tính như sau :
	abcd
	 + eg
	Hãy cho biết kết quả của phép tính thay đổi như thế nào .
Giải :
Khi đặt phép tính như vậy thì số hạng thứ hai tăng gấp 100 lần .Ta có :
	Tổng mới = SH1 + 100 x SH2
	 = SH1 + SH2 + 99 x SH2 
	 =Tổng cũ + 99 x SH2 
Vậy tổng mới tăng thêm 99 lần số hạng thứ hai.
Bài 2: Khi nhân 1 số tự nhiên với 6789, bạn Mận đã đặt tất cả các tích riêng thẳng cột với nhau như trong phép cộng nên được kết quả là 296 280. Hãy tìm tích đúng của phép nhân đó. 
Giải :
Khi đặt các tích riêng thẳng cột với nhau như trong phép cộng tức là bạn Mận đã lấy thừa số thứ nhất lần lượt nhân với 9, 8, 7 và 6 rồi cộng kết quả lại. Do
	9 + 8 + 7 + 6 = 30
nên tích sai lúc này bằng 30 lần thừa số thứ nhất. Vậy thừa số thứ nhất là :
	 296 280 : 30 = 9 876
	Tích đúng là : 9 876 x 6789 = 67 048 164
Bài 3 : Khi chia 1 số tự nhiên cho 41, một học sinh đã chép nhầm chữ số hàng trăm của số bị chia là 3 thành 8 và chữ số hàng đơn vị là 8 thành 3 nên được thương là 155, dư 3. Tìm thương đúng và số dư trong phép chia đó.
Giải :	
 Số bị chia trong phép chia sai là :
	41x 155 + 3 = 6358
	Số bị chia của phép chia đúng là : 6853
	Phép chia đúng là :
	6853 : 41 = 167 dư 6
c./ Bài tập về nhà:GV yêu cầu HS về nhà làm 2 bài tập sau:
Bài 4 : Hiệu của 2 số là 33, lấy số lớn chia cho số nhỏ được thương là 3 và số dư là 3. Tìm 2 số đó
Bài 5 : Hai số thập phân có tổng bằng 55,22; Nếu dời dấu phẩy của số bé sang trái 1 hàng rồi lấy hiệu giữa số lớn và nó ta được 37, 07. Tìm 2 số đó.
Giải :
	Theo bài ra ta có
Số nhỏ :	|	| 	3
Số lớn :	|	|	|	| |
 33
	Số nhỏ là :
	(33 - 3) : 2 = 15
	Số lớn là :
	33 + 15 = 48
	Đáp số 15 và 48.
Giải :
Khi dời dấu phẩy của số bé sang trái 1 hàng tức là ta đã giảm số bé đi 10 lần 
Theo bài ra ta có sơ đồ :
37,07
Số lớn : | | 	 |	 55,22 
Số bé	 : | | ... hứ 5 có 5 cách chọn
	Þ Số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 5 là: 5 × 6 × 7 × 8 × 8
	Kết luận: Vậy số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 5 là:
(5 × 6 × 7 × 8 × 9) + (5 × 6 × 7 × 8 × 8)
Bài 6:
Hỏi có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau mà chia hết cho 2?
 Hd:
	Số các số tự nhiên gồm 6 chữ số khác nhau:
	+ Chữ số ở vị trí thứ 1 có 9 cách chọn
	+ Chữ số ở vị trí thứ 2 có 9 cách chọn 
+ Chữ số ở vị trí thứ 3 có 8 cách chọn
+ Chữ số ở vị trí thứ 4 có 7 cách chọn
+ Chữ số ở vị trí thứ 5 có 6 cách chọn
+ Chữ số ở vị trí thứ 6 có 5 cách chọn
 Þ Số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 5 là: 5 × 6 × 7 × 8 × 9 × 9
	Mà trong tập các số tự nhiên trên số các số chẵn và các số lẻ là bằng nhau, nên suy ra số các số tự nhiên gồm 6 chữ số khác nhau mà chia hết cho 2 là:
	(5 × 6 × 7 × 8 × 9 × 9) : 2 = 5 × 3 × 7 × 8 × 9 × 9
Bài 7:
Hỏi có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau mà chia hết cho 4?
 Hd:
	Ta biết rằng điều kiệncần và đủ để một số tự nhiên chia hết cho 4 là 2 chữ số tận cùng là số chia hết cho 4.
	Số các số gồm 2 chữ số hàng chục và hàng đơn vị khác nhau mà chia hết cho 4: 
{04, 08, 12,  , 92, 96 } \ {44, 88} ---- [(96 – 04) : 4 +1] – [2] = 22
	Trong 22 số đó có 16 số không chứa chữ số không và 6 số chứa một chữ số 0 là: 04, 08, 20, 40, 60, 80.
 	Trường hợp 1: Hai chữ số cuối chứa 1 chữ số 0
	+ Chữ số ở vị trí thứ 1 có 8 cách chọn
	+ Chữ số ở vị trí thứ 2 có 7 cách chọn 
+ Chữ số ở vị trí thứ 3 có 6 cách chọn
+ Chữ số ở vị trí thứ 4 có 5 cách chọn
 Þ Số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 4 là: 6 × [5 × 6 × 7 × 8]
Trường hợp 2: Hai chữ số cuối không chứa chữ số 0
	+ Chữ số ở vị trí thứ 1 có 7 cách chọn
	+ Chữ số ở vị trí thứ 2 có 7 cách chọn 
+ Chữ số ở vị trí thứ 3 có 6 cách chọn
+ Chữ số ở vị trí thứ 4 có 5 cách chọn
 Þ Số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 4 là: 16 × [5 × 6 × 7 × 7]
 Kết luận: Vậy số các số tự nhiên gồm 6 chữ số khác nhau chia hết cho 4 là:
(6 × [5 × 6 × 7 × 8]) + (16 × [5 × 6 × 7 × 7])
Bài 8:
Hỏi có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau và chia hết cho 5 được cấu tạo từ các chữ số {0, 1, 2, 3, 4, 5, 6, 7}?
 Hd:
	Trường hợp 1: Chữ số hàng đơn vị chứa chữ số 0
	+ Chữ số ở vị trí thứ 1 có 7 cách chọn
	+ Chữ số ở vị trí thứ 2 có 6 cách chọn 
+ Chữ số ở vị trí thứ 3 có 5 cách chọn
+ Chữ số ở vị trí thứ 4 có 4 cách chọn
	Þ Số các số tự nhiên gồm 5 chữ số khác nhau chia hết cho 5 là: 4 × 5 × 6 × 7
Trường hợp 2: Chữ số hàng đơn vị chứa chữ số 5
	+ Chữ số ở vị trí thứ 1 có 6 cách chọn
	+ Chữ số ở vị trí thứ 2 có 6 cách chọn 
+ Chữ số ở vị trí thứ 3 có 5 cách chọn
+ Chữ số ở vị trí thứ 4 có 4 cách chọn
	Þ Số các số tự nhiên gồm 5 chữ số khác nhau chia hết cho 5 là: 4 × 5 × 6 × 6
	Kết luận: Vậy số các số tự nhiên gồm 5 chữ số khác nhau chia hết cho 5 là:
(4 × 5 × 6 × 7 ) + (4 × 5 × 6 × 6 )
Bài 9:
Cho các chữ số 0, 1, 2, 3, 4. Hỏi có thể lập được bao nhiêu số tự nhiên từ những chữ số trên, trong đó chữ số 4 có mặt 3 lần, còn các chữ số còn lại có mặt đúng một lần?
 Hd:
Theo bài ra ta thấy số tự nhiên có chữ số 4 có mặt 3 lần, còn 4 chữ số còn lại có mặt đúng một lần là số tự nhiên có 7 chữ số.
Do vậy chữ số 0 có 6 vị trí để chọn
Chữ số 4 có mặt đúng 3 lần, tức là chiếm 3 vị trí còn lại trong 6 vị trí còn lại: Chữ số 4 có C36 = 20 cách chọn
Với 3 vị trí còn lại thì 3 chữ số 1, 2, 3 mỗi chữ số chiếm một, nên có 3! =1 × 2 × 3 cách chọn.
Þ Số các số tự nhiên trong đó chữ số 4 có mặt 3 lần, còn các chữ số còn lại có mặt đúng một lần là: 6 × 20 × 6 = 120 số
Bài 10:
Hỏi có bao nhiêu số tự nhiên có 4 chữ số sao cho không có chữ số nào lặp lại đúng 3 lần?
 Hd:
Ta có:
+ Số các số tự nhiên gồm 4 chữ số là: 9 × 10 × 10 × 10
+ Số các số tự nhiên gồm 4 chữ số, trong đó có đúng một chữ số lặp lại đúng 3 lần là: 
Chữ số 0 lặp lại đúng 3 lần là: 9
Chữ số 1 lặp lại đúng 3 lần là: 
	Vị trí thứ 1 có 8 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 2 có 9 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 3 có 9 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 4 có 9 cách chọn 9 chữ số ngoài số 1
Þ Số các số tự nhiên có 4 chữ số trong đó chữ số 1 lặp lại đúng 3 lần là: 8 × 9 × 9 × 9 = 35
Chữ số 9 lặp lại đúng 3 lần là: 
	Vị trí thứ 1 có 8 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 2 có 9 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 3 có 9 cách chọn 9 chữ số ngoài số 1
	Vị trí thứ 4 có 9 cách chọn 9 chữ số ngoài số 1
Þ Số các số tự nhiên có 4 chữ số trong đó chữ số 1 lặp lại đúng 3 lần là: 8 × 9 × 9 × 9 = 35
Vậy số các số tự nhiên gồm 4 chữ số, trong đó có đúng một chữ số lặp lại đúng 3 lần là 9 + 9 × 35 = 324
Suy ra: Số các số tự nhiên có 4 chữ số sao cho không có chữ số nào lặp lại đúng 3 lần là: [9 × 10 × 10 × 10] – [324] = 8676
Bài 11:
Cho các chữ số 0, 1, 2, 3, 4, 5, 6. Hỏi có bao nhiêu số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có mặt chữ số 5?
 Hd:
Trường hợp 1: Số tự nhiên tạo thành chứa chữ số 0
- Có 4 vị trí có thể chọn chữ số 0, sau đó còn 4 vị trí chọn chữ số 5. 
- Ta thấy 3 vị trí còn lại chọn 3 trong 5 chữ số {1, 2, 3, 4, 6}, tức là có 5 × 4 × 3 cách chọn. 
Do vậy số các số tự nhiên trong trường hợp này là: 4 × 4 × [5 × 4 × 3]
Trường hợp 2: Số tự nhiên tạo thành không chứa chữ số 0
- Có 5 cách chọn vị trí có thể chọn chữ số 5, sau đó còn 4 vị trí còn lại chọn 4 trong 5 chữ số {1, 2, 3, 4, 6}, tức là có 5 × 4 × 3 × 2 cách chọn.
Do vậy số các số tự nhiên trong trường hợp này là: 5 × [5 × 4 × 3 × 2]
Tóm lại: Số số tự nhiên có 5 chữ số khác nhau và nhất thiết phải có mặt chữ số 5 là: {4 × 4 × [5 × 4 × 3]} + {5 × [5 × 4 × 3 × 2]}
Bài 12:
Một đoàn vận động viên tham gia thi đấu thể thao gồm 2 môn bắn súng và bơi lội. Trong đoàn số vận động viên nam có 10 người, số vận động viên bắn súng có 14 người.Tính số người của toàn đoàn, biết số nữ thi bơi bằng số nam bắn súng.
 Hd:
Ta có:
Số người của toàn đoàn = Số nam + Số nữ
Số nữ của toàn đoàn = Số nữ bơi + Số nữ bắn súng
Mà theo bài ra ta có số nữ thi bơi bằng số nam bắn súng, nên suy ra:
Số nữ của toàn đoàn = Số nam bắn súng + Số nữ bắn súng = Số người bắn súng = 14 người.
Vậy số người của toàn đoàn là: 10 + 14 = 24 (người)
Bài 13:
Một nhóm học sinh gồm 10 học sinh, trong đó có 7 nam và 3 nữ. Hỏi có bao nhiêu cách xếp 10 người trên thành một hàng dọc sao cho 7 học sinh nam đứng cạnh nhau?
 Hd:
Để 7 học sinh nam đứng cạnh nhau ta có số cách là 7! = 1 × 2 × 3 × 4 × 5 × 6 × 7
Khi 7 học sinh nam đứng cạnh nhau ta coi như cùng 1 vị trí và cùng với 3 học sinh nữ xếp vào 4 vị trí. Ta có 4! = 1 × 2 × 3 × 4 cách
Do vậy số cách xếp 10 học sinh đã cho thành một hàng dọc sao cho 7 học sinh nam đứng cạnh nhau là: 4! × 7!
Bài 14:
Hỏi có bao nhiêu cách xếp 5 người A, B, C, D, E thành một hàng ngang sao cho hai người A, B không đứng cạnh nhau?
 Hd:
Số cách xếp 5 người A, B, C, D, E thành một hàng ngang là: (1 × 2 × 3 × 4 × 5) 
Hai người A, B đứng cạnh nhau ta coi là một người và hàng đó chỉ còn 4 người và có 2 trường hợp xảy ra. 
Mà số cách xếp 4 người thành một hàng ngang là: 1 × 2 × 3 × 4 . 
Do đó số cách xếp 5 người A, B, C, D, E thành một hàng ngang sao cho hai người A, B đứng cạnh nhau là: (1 × 2 × 3 × 4) × 2 
Vậy số cách xếp 5 người A, B, C, D, E thành một hàng ngang sao cho hai người A, B không đứng cạnh nhau là: (1 × 2 × 3 × 4 × 5) - (1 × 2 × 3 × 4) × 2 
Bài 15:
Trong một tháng nào đó có 3 ngày thứ năm là ngày chẵn. Hỏi ngày 26 của tháng đó là ngày thứ mấy?
 Hd:
	Vì tháng đó có 3 ngày thứ năm là ngày chẵn và một tháng tối đa chỉ chứa 5 ngày của một thứ, nên suy ra: Tháng đó có 5 ngày thứ năm (2 ngày thứ năm lẻ xen kẽ 3 ngày thứ năm là ngày chẵn.)
Các ngày thứ năm của tháng đó có thể lần lượt là:. a, a + 7, a + 14, a + 21, a + 28
Nếu a là số lẻ thì a + 7 và a + 21 phải là số chẵn. Điều này mâu thuẫn với giả thiết tháng đó có 3 ngày thứ năm là ngày chẵn. Vậy suy ra a phải là só chẵn
Vì số ngày trong một tháng chỉ từ 1 tới 31, nên ta có a + 28 £ 31 Þ a £ 3
Từ đây suy ra a = 2
Do đó suy ra: Ngày 23 = 2 + 3 × 7 là thứ năm và ngày 26 là ngày chủ nhât.
Bài 16:
Một nhóm bạn thân bao gồm cả nam và nữ. Tính số người trong nhóm người đó biết rằng:
	- Mỗi bạn nam trong nhóm có số bạn nam thân bằng số bạn nữ thân của mình.
	- Mỗi bạn nữ trong nhóm có số bạn nữ thân bằng nửa số bạn nam thân của mình.
 Hd:
	Theo bài ra ta có:
	Mỗi bạn nam trong nhóm có số bạn nam thân bằng số bạn nữ thân của mình, tức là: Số nam nhiều hơn số nữ là 1 người (Số nam = Số nữ + 1). Suy ra: 2 lần số nam bằng 2 lần số nữ thêm vào 2 người. 
	Mỗi bạn nữ trong nhóm có số bạn nữ thân bằng nửa số bạn nam thân của mình, tức là: Số nam bằng 2 lần số nữ bớt đi 2 người (Số nam = 2 × Số nữ - 2). . 
	Do đó suy ra: 2 lần số nữ bớt đi 2 chính bằng số nữ thêm vào 1 người 
	Vậy suy ra: Số nữ chính bằng 3 người. Từ đây suy ra số nam bằng 4 người. Vậy ta có số người trong nhóm là 7 người.
Bài 17:
Giá hoa ngày 8/3 tăng 10% so với trước ngày 8/3, giá hoa sau ngày 8/3 giảm 10% so với ngày 8/3. Hãy so sánh giá hoa trước ngày 8/3 và sau ngày 8/3?
 Hd:
	Gọi giá hoa trước ngày 8/3 là 100% thì ta có giá hoa ngày 8/3 là 110% và giá hoa sau ngày 8/3 là: 
	Vậy giá hoa sau ngày 8/3 rẻ hơn giá hoa sau ngày 8/3 là 1%
Bài 18: Nguyên tắc Điriclê tổng quát
Cho một tập hợp A gồm n phần tử riên biệt. Chứng minh rằng: Với bất kỳ cách phân hoạch tập hợp A thành m tập con rời nhau: A1, A2,  , Am. thì luôn luôn tồn tại 1 tập con chứa ít nhấtphần tử
 Hd:
	Theo bài ra phân hoạch tập hợp A được phân hoạch thành m tập con rời nhau A1, A2,  , Am , nên ta có: Æ với I ≠ j
	Nếu tất cả các Ai có số phần tử bằng nhau và bằng thì số phần tử của A sẽ là . Do đó suy ra phải tồn tại 1 tập con Ai sao cho chứa ít nhất phần tử. 
Bài 19:
Trong một lớp học có 32 em học sinh. Hãy chứng tỏ rằng trong đó có ít nhất 2 em có cùng ngày sinh và có ít nhất 3 em có cùng tháng sinh?
 Hd:
	- Áp dụng nguyên tắc Điriclê tổng quát với n = 32 và m = 31 (Vì một tháng có tối đa 31 ngày). Ta có kết quả là: học sinh cùng ngày sinh
	- Áp dụng nguyên tắc Điriclê tổng quát với n = 32 và m = 12 (Vì một có 12 tháng). Ta suy ra kết quả là: học sinh cùng tháng sinh
Bài 20:
Trong một trường học có 740 em học sinh. Hãy chứng tỏ rằng trong đó có ít nhất 3 em có cùng ngày sinh và cùng tháng sinh?
 Hd:
	Áp dụng nguyên tắc Điriclê tổng quát với n = 740 và m = 366 (Vì một năm có 365 ngày hoặc 366 ngày). Ta suy ra kết quả là: học sinh cùng ngày sinh và tháng sinh.

Tài liệu đính kèm:

  • docGiao an boi duong Toan 5.doc