Phương pháp dạy nội dung chương trình môn toán ở tiểu học

Phương pháp dạy nội dung chương trình môn toán ở tiểu học

PHƯƠNG PHÁP DẠY NỘI DUNG CHƯƠNG TRÌNH MÔN TOÁN Ở TIỂU HỌC

I - DẠY HỌC CÁC SỐ TỰ NHIÊN .

 1. Mục đích yêu cầu .

Dạy học số TN ở Tiểu học nhằm giới thiệu cho học sinh khái niệm về số TN và 10 kí hiệu ( 10 chữ số 0 9 ) để viết số . về các đơn vị đếm của hệ thập phân và quy tắc giá trị theo vị trí của cách viết số trong hệ thập phân . Về sự sắp thứ tự và so sánh các số tự nhiên .

 - Giúp học sinh Tiểu học nhận biết được quy tắc thực hiện các phép tính cộng , trừ , nhân , chia và quan hệ giữa các phép tính để biết vận dụng các bảng tính và tính chất của các phép tính để tính nhẩm , tính nhanh và tính đúng biết thử lại phép tính khi cần thiết .

 - Nhằm củng cố các kiến thức có liên quan trong môn Toán như đại lượng và phép đo đại lượng , phát triển năng lực TD năng lực thực hành của học sinh.

2 . DẠY HỌC HÌNH THÀNH SỐ TỰ NHIÊN . ( lớp 1 - 4)

 Số tự nhiên là một khái niệm trìu tượng để học sinh tiểu học hiểu được bản chất của số TN cần phải trải qua một quá trình với các mức độ khác nhau và bằng nhiều cách khác nhau kết hợp cơ chế hình thành khái niệm với kinh nghiệm sống của học sinh .

 

doc 17 trang Người đăng hang30 Lượt xem 1643Lượt tải 1 Download
Bạn đang xem tài liệu "Phương pháp dạy nội dung chương trình môn toán ở tiểu học", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
PHƯƠNG PHÁP DẠY NỘI DUNG CHƯƠNG TRÌNH MÔN TOÁN Ở TIỂU HỌC
I - DẠY HỌC CÁC SỐ TỰ NHIÊN .
 1. Mục đích yêu cầu .
Dạy học số TN ở Tiểu học nhằm giới thiệu cho học sinh khái niệm về số TN và 10 kí hiệu ( 10 chữ số 0 9 ) để viết số . về các đơn vị đếm của hệ thập phân và quy tắc giá trị theo vị trí của cách viết số trong hệ thập phân . Về sự sắp thứ tự và so sánh các số tự nhiên .
 - Giúp học sinh Tiểu học nhận biết được quy tắc thực hiện các phép tính cộng , trừ , nhân , chia và quan hệ giữa các phép tính để biết vận dụng các bảng tính và tính chất của các phép tính để tính nhẩm , tính nhanh và tính đúng biết thử lại phép tính khi cần thiết .
 - Nhằm củng cố các kiến thức có liên quan trong môn Toán như đại lượng và phép đo đại lượng , phát triển năng lực TD năng lực thực hành của học sinh.
2 . DẠY HỌC HÌNH THÀNH SỐ TỰ NHIÊN . ( lớp 1 - 4)
 Số tự nhiên là một khái niệm trìu tượng để học sinh tiểu học hiểu được bản chất của số TN cần phải trải qua một quá trình với các mức độ khác nhau và bằng nhiều cách khác nhau kết hợp cơ chế hình thành khái niệm với kinh nghiệm sống của học sinh .
 Giai đoạn 1 : Hình thành k/n tập hợp và lực lượng 
 - Giới thiệu cho học sinh các tập hợp khác nhau bằng đồ vật hoặc tranh vẽ . Để so sánh số phần tử , gv hướng dẫn hs cách ghép cặp ( mỗi phần tử của tập hợp này ghép một phần tử của tập hợp kia ). Thực chất là cho học sinh làm quen với các thiết lập tương ứng một đối một . Từ đó học sinh nhận thức được các tập hợp không thiết lập được tương ứng một đối một thì “ số ptử” không như nhau và hình thành khái niệm “nhiều hơn” “ít hơn”. Các tập hợp có số phần tử bằng nhau xếp cùng một vị trí gọi là các tập hợp tương đương .
Giai đoạn 2 Giới thiệu các kí hiệu số , cách viết và đọc các số hs nhận thức được các tập hợp tương đương đều có tính chất chung là “số phần tử” của chúng đều như nhau . Đặt tên cho mỗi tập hợp bằng các chữ số , nhấn mạnh rằng quan trọng là sự bằng nhau về “ số phần tử” chỉ là quy ước thuận tiện nhất để xem xét số phần tử của tập hợp .
Giai đoạn 3 Hình thành khái niệm dãy số ( trang 11 lớp 4 )
 Sau khi hs đã nắm được các chữ số , cách đọc , cách viết các chữ số , xếp các tập hợp thành một dãy theo quan hệ “ nhiều hơn” “ ít hơn” , giáo viên giúp học sinh viết các “chữ số” tương ứng với “số phần tử” của từng tập hợp thành một hàng hs nhận được một dãy số . Nhấn mạnh tính chất quan trọng của dãy số là quan hệ “ liền trước” “ liền sau” .
 Củng cố thì yêu cầu học sinh tập đếm xuôi , đếm ngược , đếm liên tiếp
\đếm nhảy và định vị các số trong dãy .
3 - DẠY HỌC PHÉP CỘNG , PHÉP TRỪ CÁC SỐ TỰ NHIÊN 
a. Dạy học phép cộng .
 Có thể định nghĩa phép cộng như là : Hợp của 2 tập hợp không có ptử trung mà kết quả là số phân tử của cả hai tập hợp . Số ptử này tìm được nhờ phép đếm .
Ví dụ : GV đưa ra hai tập hợp .
Một tập hợp gồm 3 que tính 
 Đếm số phần tử của hai tập hợp 
Một tập hợp gồm 5 que tính
 Hướng dẫn ghi phép cộng 3 + 5 = 8 ( trang 5 lớp 2 )
3 ,5 gọi là các số hạng , 8 gọi là tổng của phép cộng 3 + 5 
Cộng không nhớ 
Cộng có nhớ : ( lớp 2 trang 12 ) Cộng có tổng bằng 10 
 Cộng có nhớ 
Từ đó hình thành bảng cộng cho hs
Ví dụ 2 : Đưa ra sơ đồ 8
Cho hs quan sát và viết 3 thêm 5 
Viết 3 + 5 cho hs đếm số phần tử sau
khi đã thêm 5 được 8 , viết 3+ 5 = 8
phép cộng các số có nhiều chữ số
 được quy về phép cộng x x x
các chữ số của chúng 	3	x x 5
 nhờ bảng cộng và quy tắc nhớ x x x
thực hiện như sau :
- Tách cấu tạo thập phân của các số hạng
 Cộng các chữ số cùng hàng .
 Cộng hai chữ số cùng hàng không vượt 9 thì kết quả vào hàng tương ứng , cộng cùng hàng mà vượt 9 thì nhớ 1 sang hàng kế tiếp bên trái .
 Ví dụ : Tách cấu tạo thập phân của các số hạng 
45 = 40 + 5 = 4 chục + 5 đơn vị 
18 = 10 + 8 = 1 chục + 8 đơn vị 
Cộng cùng hàng : 4 chục cộng 1 chục = 5 chục 
 5 đơn vị cộng 8 đơn vị = 13 đơn vị 
tách 13 = 10 + 3 = 1 chục + 3 đơn vị 
chuyển 1 chục sang hàng kề bên trái 
5 chục + 1 chục = 6 chục 
Kết quả 
b, Dạy học phép trừ .
Phép trừ được dạy trong quan hệ với phép cộng , là phép ngược của phép cộng 
Phép trừ có nhớ trong phạm vi 100 ( trang 48 - lớp 2 )
- Ta có thể coi phép trừ như là phép lấy phần bù của một tập hợp .
A B ( Phần bù của B trong A ) = x A
 x B
Cho hai số tự nhiên a,b , a b , số tự nhiên c gọi là hiệu hai số a và b nếu
 b + c = a kí hiệu a - b = c 
GV đưa lại sơ đồ 
theo sơ đồ 3 + 5 = 8 giới thiệu 8 bớt 5 còn 3 viết 8 - 5 = 3 hay 
8 gọi là số bị trừ 
5 gọi là số trừ 
3 gọi là hiệu của phép trừ 8 - 5 = 3 ( lớp 2 trang 9)
 8
 x x x
 5
3 x x x x 
cần cho hs hiểu 8 - 5 = 3 vì 3 + 5 = 8 bảng trừ 
+ Dạy học phép trừ các số có nhiều chữ số thực hiện như sau .
- Tách cấu tạo thập phân của các số hạng 
- Thực hiện trừ các số hạng cùng hàng 
- Cùng một hàng nếu chữ số của số bị trừ không nhỏ hơn chữ số của số trừ thì ghi kết quả phép trừ các chữ số đó vào hàng tương ứng . Nếu chữ số của số bị trừ < csố của số trừ thì bớt một ở số liền trước bên trái của số bị trừ và đổi thành 10 đơn vị ở hàng đang thực hiện phép trừ rồi cộng vào chữ số tương ứng của số bị trừ và ghi kết quả phép trừ vào hàng tương ứng .
Thí dụ : 45 = 40 + 5 = 4 chục + 5 đơn vị 
 37 = 30 + 7 = 3 chục + 7 đơn vị 
hàng đơn vị do 5 < 7 nếu bớt 1 ở hàng chục của số bị trừ đổi thành 10 đơn vị rồi cộng vào hàng đơn vị của số trừ được 15 thực hiện 15 - 7 được 8 ghi 8 vào hàng đơn vị hàng chục số bị trừ và số trừ là 3 . thực hiện 3 -3 = 0 
4 DẠY HỌC PHÉP NHÂN PHÉP CHIA SỐ TỰ NHIÊN .( lớp 2 trang 92)
a - Dạy học phép nhân : Phép nhân 2 số TN được định nghĩa như là phép cộng các số hạng bằng nhau .
Với hai số tự nhiên a , b phép cộng a + a + a +...+ a
 b số hạng 
được viết thành a b gọi là phép nhân a với b 
a, b gọi là thừa số , kquả phép nhân a b gọi là tích .
Theo định nghĩa trên cần có quy ước : a 0 = 0 , a 1= a
Hạn chế : Đn trên thì vai trò các thừa số không bình đẳng và phép nhân chỉ là TH đặc biệt của phép cộng các số hạng bằng nhau chứ không phải là phép tính mới .
Ta có thể Đ/n phép nhân a và b như sau :
Lấy tập hợp A có a phần tử
Lấy tập hợp B có b phần tử
lập tích Decarder của hai tập hợp đó kí hiệu A B nghĩa là 
A B = ( x,y ) x A , y B 
Rồi đếm số phần tử của tập hợp A B , ta được kết quả phép nhân a b cần quy ước A =
ưu điểm : Phép nhân là phép tính mới , độc lập với phép cộng , các thừa số tham gia vào phép nhân bình đẳng với nhau . 
 Thí dụ : An lấy mỗi lần hai que diêm và lấy tất cả 3 lần . Hỏi An đã lấy tất cả bao nhiêu quy diêm .
Giải : lấy 2 que diêm 3 lần được 6 que 
Viết 2 x 3 =6 ( đọc 2 nhân 3 được 6 ) 
mô tả phép nhân trên bằng hình chữ nhật có 6 ô , 2 dòng , 3 cột 
x
x
x
x
x
x
Hướng dẫn hs 2 cách biểu diễn + 2 dòng , mỗi dòng có 3 điểm viết 3 + 3
 + 3 cột , mỗi cột có 2 điểm viết 2 +2+ 2
Giới thiệu cách viết 3 (đ) 2 hoặc 2 (đ) 3 
HS có thể nhận biết 1 cách trực giác 
3 x 2 ( điểm ) = 2 x 3 ( điểm )
K quát 3 x 2 = 2 x 3 = 6 
Cách nhân số có nhiều chữ số ( Nhân số có hai chữ số trang 69 - lớp 4 )
 ví dụ : 
352 = 300 +50 + 2 = 3 trăm + 5 chục + 2 đơn vị 
24 = 20 + 4 = 2 chục + 4 đơn vị 
Thực hiện phép nhân mỗi chữ số với các chữ số .
( 3 trăm + 5 chục + 2 đơn vị ) x 4
= 12 trăm + 20 chục + 8 đơn vị 
= 1200 + 200 + 8 
= 1408
( 3 trăm + 5 chục + 2 đơn vị ) x 2 chục 
= 6000 + 1000 + 40 = 7040
cộng tích các bộ phận 
Kết quả : 352 24 = 8448
hay 
b. Dạy học phép chia .( Lớp 2 trang 107)
+ . Phép chia hết . Cho hai số tự nhiên a ,b , b0 , a b
thực hiện liên tiếp phép trừ a - b , a- 2b ,... a- qb mỗi hiệu trên đều cho ta một số tự nhiên , các hiệu đều giảm dần từ trái sang phải . Nếu đến một lúc nào đó ta gặp số tự nhiên q sao cho a - qb = 0 hay a= qb, . ta nói a chia hết cho b và viết a : b = q 
a gọi là số bị chia , b là số chia , q là thương số 
 - Phép chia còn được định nghĩa thông qua phép nhân ( ( là phép toán ngược của phép nhân ) giả sử cho a , b N , b0 ,a b nếu có số q N sao cho q x b =a ta nói a b Viết a : b = q ( a là số bị chia , b số chia , kết quả a : b là thương 
 - Ở tiểu học việc học phép chia gắn liền với việc học phép nhân .
Từ bài toán đơn “chia đều” , giới thiệu mô hình ;
6 = ? + ? + ? hay 6= 2+2+2
Ví dụ : Có 6 quả cam chia đều cho 3 em . Hỏi mỗi em được mấy quả ?
Cách 1 : Lần thứ nhất lấy 3 quả , mỗi em được một quả còn lại 6 - 3 = 3 ( quả ) . Lần thứ hai chia đều cho mỗi em một quả nữa , còn lại 3 - 3 = 0 quả hay 6- 2 x 3 = 0 ( quả ) 
Vậy 6 quả cam chia đều cho 3 em , mỗi em được 2 quả 
Cách 2 : Vì 2 x 3 = 6 Nên 6 : 3 =2 
Cách 3 : Vẽ mô hình và chia nhóm 
 ? 	? ?
Cho học sinh quan sát và nhận xét 6 : 3 = 2 
- Chia trong bảng xd các bảng chia từ bảng chia 1 đến bảng chia 10 : việc xây dựng mỗi công thức chia đều dựa vào một công thức nhân tương ứng .
 Ví dụ :Từ công thức nhân 2 x 4 = 8 xd công thức chia 8 : 2 = 4 ,8 : 4 =2
- Chia ngoài bảng : ( lớp 3 chia số có hai chữ số cho số có 1 chữ số 
+ Phép chia có số bị chia là 0 
+ Không thể chia cho số 0 
+ Phép chia có số bị chia tròn chục .
+ Chia một tổng cho một số ( lớp 4 )
+Chia số có hai chữ số cho số có 1 chữ số .
+ Chia số có hai chữ số cho số có 2 chữ số .
Ví dụ : 36 : 3 = ( 30 + 6 ) : 3 ( vận dụng chia một tổng cho một số )
 = 30 : 6 + 6 : 3 
 = 10 + 2 
 = 12
Kĩ thuật tính . ( chia từ trái sang phải )
3 chia 3 được 1 , Viết 1 
1 nhân 3 bằng 3 , 3-3 = 0 viết 0
6 chia 3 được 2 , viết 2 
2 nhân 3 bằng 6 , 6 - 6 = 0 viết 0 
 + Phép chia còn dư ( trang 29 lớp 3)
 Gsử cho a , b N , bo , a b thực hiện liên tiếp các phép trừ a - b , a - 2b , a - 3b ,..., q- qb ...mỗi hiệu trên đều cho một số tự nhiên , các hiệu trên giảm dần từ trái sang phải . Đến một lúc nào đó gặp số tự nhiên q sao cho a - bq = r sao cho 0 < r <b 
 Ta nói a chia cho b được q dư r 
 kí hiệu a = bq + r 
Lý luận như trên chứng tỏ phép chia có dư bao giờ cũng thực hiện được và cặp số q , r tìm được là duy nhất , r gọi là số dư trong phép chia a cho b .
5 . Dạy học tính chất các phép tính trên số tự nhiên .
a . Tính chất giao hoán của phép cộng .
a+ b = b + a 
ví dụ : 
Cho học sinh hoạt động nhóm 
Tính giá trị của biểu thức a + b và b + a trong các trường hợp sau :
a
15
137
1204
b
21
215
3176
a+b
b + a
 So sánh giá trị a + b và b +a 
( Khi đổi chỗ các số hạng của tổng a + b thì giá trị của tổng này không thay đổi )
b . Tính chất kết hợp của phép cộng .
( a + b) + c = a+ ( b+ c ) 
c . tính chất giao hoán của phép nhân .
 a x b = b x a 
d . tính chất kết hợp của phép nhân .
(  ...  của hình chữ nhật đó .
Hướng dẫn hs lấy 
Kết luận : Muốn chia hai psố ta làm như sau : Lấy tử số và mẫu số của phân số thứ nhất nhân với phân số thứ hai đảo ngược .
III- DẠY HỌC CÁC SỐ THẬP PHÂN .( LỚP 5)
Nhận xét : Số thập phân dùng để ghi các số đo đại lượng khi không đúng một số nguyên lẫn đơn vị đo . và trang bị cho học sinh những phương tiên tính toán thường được dùng hàng ngày .
1 . Dạy học hình thành khái niệm số thập phân . 
a , Xây dựng khái niệm phân số trước - xây dựng khái niệm số thập phân 
Những Psố có mẫu số luỹ thừa của 10 là các phân số thập phân . 
các phân số thập phân viết dạng không MS 
Gọi là số thập phân . Chú ý cách chuyển phân số thập phân số thập phân .
b, Cách XD số thập phân gắn liền với phép đo đại lượng 
Số thập phân được hiểu như là cách viết lại số TN theo các đơn vị đo khác nhau ( các đơn vị kế tiếp nhau hơn kém nhau 10 lần )(đơn vị đo độ dài , khối lượng , dung tích ..)
Ví dụ : Cho học sinh đo độ dài bảng bằng thước m có vạch dm ,cm ,mm.
Giả sử kết quả đo là : 1m9dm5cm
Hướng dẫn ghi KQ theo cùng một đơn vị đo 
+ nếu đơn vị đo là m thì 1m9dm5cm = 1m + m +m = = 1,95m
+ Đơn vị đo là dm : 
1m9dm5cm= 10dm + 9dm + dm = dm = 19,5 dm
Thành phần số thập phân : Gồm hai phần 
- Phần nguyên (ở bên trái dấu phẩy ) và phần thập phân ( những cữ ở bên phải dấu phẩy )
Ví dụ : 1,95 1 là phần nguyên
 0,35 là phần thập phân ( 35 phần trăm ) 
( 3 phần mười 5 phần trăm ) 
c . Phép chia có dư mà thương là số thập phân 
Trong phép chia có dư Ví dụ : 3 :4 = ( phân số thập phân ) - 0,75 ( số thập phân ) 
 - Có nhiều psố không cho dưới dạng psó thập phân - có thể biểu diễn dưới dạng phân số thập phân . 
Chú ý : Psố tối giản biểu diễn dạng phân số thập phân mẫu số q không có ước ngtố nào khác ngoài 2 và 5 .
d , cách viết đọc số thập phân . 
Viết Từ trái sang phải , từ phần nguyên , dấu phẩy đến phần thập phân 
Ví dụ : 17,523 Đọc là : Mười bảy phẩy năm trăm hai mươi ba .
Số thập phân 17,523 tạo bởi . 
Phần nguyên gồm một chục và 7 đơn vị 
Phần thập phân gồm : 5 phần mười , 2 phần trăm , 3 phần nghìn ,
Chú ý : Có thể viết thêm (hoặc xoá bỏ ) các chữ số 0 tận cùng bên phải số thập phân .
Ví dụ : 0,8 = 0,80 
2 So sánh các số thập phân .
So sánh phần nguyên với phần nguyên , phần thập phân với phần thập phân .
Hoặc làm cho số chữ số trong phần thập phân được bằng nhau - qui về so sánh hai số tn . 
Ví dụ : So sánh : 3,39 với 3,4
3,4 = 3,40 - So sánh 339 với 340 vì 339<340 nên 3,39<3,4
So sánh hai số thập phân : 
* Hai số thập phân có phần nguyên khác nhau 
ta qui về so sánh hai số tự nhiên rồi rút ra kết luận .
Ví dụ : 5 , 3 m và 4 ,7 m 
ta có : 5 , 3 m = 53 dm
 4, 7 m = 47 dm 53 > 47 KL 5,3 m > 4,7m
* Hai số thập phân có phần nguyên bằng nhau . 
 So sánh đến phần thập phân , từ hàng phần mười ...
KL ; Phần nguyên + phần thập phân = nhau 2 số = nhau .
3 . Các phép toán về số thập phân.
a . Phép cộng và trừ số thập phân . 
Hình thành quy tắc cộng theo các bước ; ( qui về cộng hai số tự nhiên chuyển về số thập phân.)
+ Chuyển đổi số số thập phân về số TN 
+ Cộng hai số tự nhiên - kết quả là số TN 
+ Chuyển kết quả từ số tự nhiên - số thập phân 
Ví dụ : 4,3 + 0,65
4,3= 4,30 = 
 4,3 + 0,65 = == 4,95
 0,65 = 
đặt tính Nhận xét : Muốn cộng hai số thập phân ta làm như sau : 
-viết số hạng này dưới số hạng kia sao cho các dấu phẩy thẳng cột .
-Cộng như cộng hai số tự nhiên ;
- Đặt dấu phẩy ở tổng thẳng cột với dấu phẩy của các số hạng .
* Trừ hai số thập phân ( Tương tự như phép cộng )
b , Phép nhân số thập phân :
Có các THợp : + Nhân một số thập phân với một số tự nhiên 
 + Nhân một số thập phân với một số thập phân 
 + Nhân một số thập phân với 10,100,.... 
Qui Trình : Tương tự như đối với phép cộng , trừ hai số thập phân . 
+ Hình thành phép tính 
+Xây dựng quy tắc .Kĩ thuật tính 
+ Luyện tập , thực hành .
Ví dụ : 1,45 + 1,45 + 1,45 = 1,45 x 3 
Chuyển 1,45 = 
1,45 x 3 = 
Nhận xét kq 
Các tính chất của phép nhân số thập phân ( Giao hoán , kết hợp , nhân một tổng với 1 số )
c . Phép chia số thập phân . 
* Chia một số thập phân cho một số tự nhiên 
Ví dụ : 3,75 : 3 
Chuyển số thập phân gắn với đơn vị số nguyên sang phân số thập phân .
+ Thực hiện phép chia PSố cho số TN 
+ Chuyển KQ sang số thập phân . 
3,75 : 3 = 
Nhận xét : đặt tính 
Quy tắc chia một số thập phân cho một số tự nhiên : 
+ Chia phần nguyên của số bị chia cho số chia .
+ Đánh dấu phẩy vào thương đã tìm được ( phần nguyên của thương )trước khi lấy chữ số đầu tiên vào phần thập phân ở số bị chia để đưa vào phép chia .
+ tiếp tục phép chia với từng chữ số của phần thập phân ở số bị chia ( tìm phần thập phân của thương ). 
* Chia một số thập phân cho 10 , 100,...,
Đây là trường hợp đặc biệt của phép chia số thập phân cho số tự nhiên . Khi số chia là 10,100,.. khi chia chỉ việc chuyển dấu phẩy của số bị chia sang bên trái một , hai .. chữ số .
* Chia một số tự nhiên cho một số tự nhiên , thương tìm được là số thập phân . 
- Dạy học trường hợp này tiến hành tương tự như trường hợp chia một số thập phân cho một số tự nhiên .
 - Về kĩ thuật tính chia một số tự nhiên cho một số tự nhiên mà còn dư thì có thể tiếp tục chia ( để tìm phần thập phân ) như sau :
 Đánh dấu phẩy vào bên phải số thương ( phần nguyên ) 
 Thêm vào bên phải số dư một chữ số 0 rồi chia tiếp . 
 Nếu còn dư nữa , lại thêm vào bên phải số dư mới một chữ số 0 , rồi tiếp tục chia , và có thể cứ làm như thế mãi .
Chú ý : Trường hợp này có thể coi như là một trường hợp mở rộng của phép chia một số thập phân cho một số tự nhiên , khi coi số bị chia là số bị chia là số thập phân còn phần thập phân gồm các chữ số 0 .
 Chẳng hạn 54 : 12 có thể coi 54,00 : 12 là trường hợp đã học ( số thập phân chia cho số tự nhiên ) 
* Tỉ số phần trăm : 
 Từ bài học về phép chia hai số tự nhiên mà thương tìm được là số thập phân mà phát biểu thành bài học về tỉ số của hai số và tỉ số phần trăm của hai số.
 Kỹ thuật tìm tỉ số phần trăm của hai số :
 - Tìm thương đó với 100 rồi viết thêm kí hiệu % vào bên phải tích vừa tìm được 
 Chẳng hạn :tìm tỉ số phần trăm của 3 và 4 , ta có 
 3 : 4+ 0,75 = 75 %
* Chia một số tự nhiên cho một số thập phân :
- Dạy học trường hợp này vẫn theo quy trình tương tự như trườn hợp trước .
 - về kĩ thuật tính 
 Chẳng hạn : 13 : 12,5 
 Chuyển thành phép chia hai số tự nhiên trên cơ sở vận dụng tính chất cùng nhân số bị chia và số chia với một số tự nhiên khác 0 thì thương vẫn không đổi . Do đó :
 13 : 12,5 = ( 13 x 10 ) : ( 12,5 x 10 ) = 130 : 125
( Trường hợp này đã được học cách chia )
- Về nguyên tắc chia một số tự nhiên cho một số thập phân : 
 + Đếm xem có bao nhiêu chữ số ở phần thập phân của số chia thì thêm vào bên phải số bị chia bấy nhiêu chữ số 0 .
 + Bỏ dấu phẩy ở số chia rồi làm phép chia như đối với các số tự nhiên .
* Chia một số thập phân cho một số thập phân . 
 - hình thành phép tính : Dựa vào bài toán đơn và quan hệ với phép nhân mà hình thành phép chia 26,52 : 3,4 =?
- Xây dựng kĩ thuật tính : Dựa vào tính chất cùng nhân số bị chia và số chia với một số tự nhiên khác 0 thì thương vẫn không đổi , để chuyển về trường hợp số chia là số tự nhiên .
Chẳng hạn : 26,52 : 3,4 = ( 26,52 x 10 ) : ( 3,4 x 10 ) 
 = 26,52 : 34
( Trường hợp này đã được học cách chia )
Về nguyên tắc chia một số thập phân cho một số thập phân : 
+ đếm xem có bao nhiêu chữ số ở phần thập phân của số chia thì chuyển dấu phẩy ở số bị chia sang bên phải bấy nhiêu chữ số ..
+ Bỏ dấu phẩy ở số chia rồi làm phép chia như trường hợp chia số tự nhiên.
Chú ý chung :
a - Phép chia số thập phân được chia làm nhiều trường hợp để học sinh rễ học , dễ rèn luyện kĩ năng; nhưng tất cả các trường hợp đó đều phải thực hiện một định hướng chung là chuyển số chia từ dạng số thập phân thành số tự nhiên .
b . Trường hợp một phép tính chia nhiều lần mà vẫn còn dư ( khác 0 ) thì chỉ yêu cầu học sinh dựng lại khi thương ( gần đúng ) có 2 - 3 chữ số ở phần thập phân . Giáo viên có thể hướng dẫn học sinh làm quen với thủ thuật “làm tròn số” trong những trường hợp đó .
c . Với nhiều trường hợp của phép chia , yêu cầu học sinh biết cách thử lại bằng phép nhân . Việc làm này vừa có ý nghĩa kiểm tra lại cách làm , vừa có ý nghĩa hiểu biết được phép chia là phép tính ngược lại của phép nhân .
 d . Khi luyện tập thực hành , cần kết hợp các số liệu là số thập phân với số tự nhiên , phân số , số đo đại lượng .
 .......................Hết ...............................
Bài tập Toán 
Bài 1 : Đề bài. 
 Anh hơn em 8 tuổi . Khi tuổi anh bằng tuổi em hiện nay thì tuổi anh gấp 3 lần tuổi em. Tính tuổi mỗi người hiện nay?
Phân tích.
 Anh hơn em 8 tuổi , khi tuổi anh bằng tuổi em hiện nay thì tuổi anh gấp 3 lần tuổi em. Tức là, tuổi anh bằng tuổi em hiện nay thì tuổi anh gấp 3 lần tuổi em trước đây. Nếu coi tuổi em trước đây là một phần thì tuổi anh trước đây là 3 phần bằng nhau như thế .
 Vì hiệu số tuổi của hai anh em không thay đổi theo thời gian nên hiện nay nếu biểu diễn tuổi em là 3 phần bằng nhau thì tuổi anh sẽ là 5 phần như thế.
Bài giải :
 Vì hiệu số tuổi giữa hai người không thay đổi theo thời gian nên ta có sơ dồ sau : 
Tuổi em trước đây :
Tuổi anh trước đây :
 ?tuổi
Tuổi em hiện nay :
 8 tuổi
Tuổi anh hiện nay : 
 ? tuổi
Tuổi em hiện nay là :
8 : ( 5-3 ) 3 = 12 ( tuổi )
Tuổi anh hiên nay là :
12 + 8 = 20 ( tuổi )
 Đáp số : em 12 tuổi và anh 20 tuổi. 
Bài 2 : Đề bài.
 Năm nay tuổi chị hơn 3 lần tuổi em là 3 tuổi đến khi tuổi em bằng tuổi chị hiện nay thì tuổi của hai chị em cộng lại bằng 49 . Hỏi năm nay chị bao nhiêu tuổi .
Phân tích : 
 Theo đầu bài năm nay tuổi chị hơn 3 lần tuổi em là 3 tuổi . vậy ta coi tuổi em năm nay biểu thị là 1 phần tuổi thì tuổi chị sẽ là 3 phần tuổi em và 3 tuổi .
 Vậy tuổi chị luôn luôn hơn tuổi em là 2 phần tuổi và 3 tuổi 
 Vì hiệu số tuổi giữa hai người không thay đổi theo thời gian đến khi tuổi em bằng tuổi chị hiện nay thì tuổi của hai chị em sẽ bằng 49 tuổi. Vậy tuổi của chị lúc đó sẽ được biểu thị bằng sơ đồ tuổi trước kia và cộng thêm 2 phần tuổi em và 3 tuổi nữa . 
 Bài giải :
 Vì hiệu số tuổi giữa hai người không thay đổi theo thời gian nên ta có sơ đồ sau : 
 ?t
Tuổi em hiện nay :
 ?tuổi
Tuổi chị hiện nay :
 3t
Tuổi em sau này :
 3t 49 Tuổi 
Tuổi chị sau này : 
 3t 3t
Tuổi của em hiện nay là :
(49 - 3 3) : (3 + 5 ) = 5(tuổi )
Tuổi của chị hiện nay là :
53 + 3 = 18 ( tuổi )
Đáp số : em 5 tuổi và chị 18 tuổi 

Tài liệu đính kèm:

  • docDE CUONG PHUONG PHAP DAY HOC MON TOAN.doc