Tổng hợp ôn thi học sinh giỏi toán lớp 5

Tổng hợp ôn thi học sinh giỏi toán lớp 5

TỔNG HỢP ÔN THI HỌC SINH GIỎI 5

BÀI 1. CÁC DẠNG TOÁN THƯỜNG GẶP .

I. MỤC TIÊU TIẾT DẠY :

- HS nắm được dạng toán và các bước giải dạng toán này.

 - Làm được một số bài tập nâng cao.

- Rèn kỹ năng tính toán cho học sinh .

II. CHUẨN BỊ

- Câu hỏi và bài tập thuộc dạng vừa học.

- Các kiến thức có liên quan.

III. CÁC HOẠT ĐỘNG DẠY HỌC

 1/ Ổn định tổ chức lớp.

 2/ Kiểm tra bài cũ.

 Gọi học sinh làm bài tập về nhà giờ trước, GV sửa chữa.

 3/ Giảng bài mới.

 

doc 129 trang Người đăng nkhien Lượt xem 1166Lượt tải 2 Download
Bạn đang xem 20 trang mẫu của tài liệu "Tổng hợp ôn thi học sinh giỏi toán lớp 5", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TỔNG HỢP ÔN THI HỌC SINH GIỎI 5
BÀI 1. CÁC DẠNG TOÁN THƯỜNG GẶP .
I. MỤC TIÊU TIẾT DẠY :
HS nắm được dạng toán và các bước giải dạng toán này.
 - Làm được một số bài tập nâng cao.
- Rèn kỹ năng tính toán cho học sinh .
II. CHUẨN BỊ
Câu hỏi và bài tập thuộc dạng vừa học.
Các kiến thức có liên quan.
III. CÁC HOẠT ĐỘNG DẠY HỌC	
 1/ Ổn định tổ chức lớp.
 2/ Kiểm tra bài cũ.
 Gọi học sinh làm bài tập về nhà giờ trước, GV sửa chữa.
 3/ Giảng bài mới.
Dạng 1 : Số chẵn, số lẻ, bài toán xét chữ số tận cùng của một số
	* Kiến thức cần nhớ :
- Chữ số tận cùng của 1 tổng bằng chữ số tận cùng của tổng các chữ số hàng đơn vị của các số hạng trong tổng ấy.
- Chữ số tận cùng của 1 tích bằng chữ số tận cùng của tích các chữ số hàng đơn vị của các thừa số trong tích ấy.
- Tổng 1 + 2 + 3 + 4 + ...... + 9 có chữ số tận cùng bằng 5.
- Tích 1 x 3 x 5 x 7 x 9 có chữ số tận cùng bằng 5.
Tích a ì a không thể có tận cùng bằng 2, 3, 7 hoặc 8.
 * Bài tập vận dụng :
Bài 1: 
a) Nếu tổng của 2 số tự nhiên là 1 số lẻ, thì tích của chúng có thể là 1 số lẻ được không?
b) Nếu tích của 2 số tự nhiên là 1 số lẻ, thì tổng của chúng có thể là 1 số lẻ được không?
c) “Tổng” và “hiệu” hai số tự nhiên có thể là số chẵn, và số kia là lẻ được không?
	Giải :
 a)	Tổng hai số tự nhiên là một số lẻ, như vậy tổng đó gồm 1 số chẵn và 1 số lẻ, do đó tích của chúng phải là 1 số chẵn (Không thể là một số lẻ được).
 b) Tích hai số tự nhiên là 1 số lẻ, như vậy tích đó gồm 2 thừa số đều là số lẻ, do đó tổng của chúng phải là 1 số chẵn(Không thể là một số lẻ được). 
 c) Lấy “Tổng” cộng với “hiệu” ta được 2 lần số lớn, tức là được 1 số chẵn. Vậy “tổng” và “hiệu” phải là 2 số cùng chẵn hoặc cùng lẻ (Không thể 1 số là chẵn, số kia là lẻ được).
Bài toán 2 : Không cần làm tính, kiểm tra kết quả của phép tính sau đây đúng hay sai?
a, 1783 + 9789 + 375 + 8001 + 2797 = 22744
b, 1872 + 786 + 3748 + 3718 = 10115.
c, 5674 x 163 = 610783
	Giải :
a, Kết quả trên là sai vì tổng của 5 số lẻ là 1 số lẻ.
b, Kết quả trên là sai vì tổng của các số chẵn là 1 số chẵn.
c, Kết quả trên là sai vì tích của 1số chẵn với bất kỳ 1 số nào cũng là một số chẵn.
Bài 3 : Tìm 4 số tự nhiên liên tiếp có tích bằng 24 024
	Giải :
	Ta thấy trong 4 số tự nhiên liên tiếp thì không có thừa số nào có chữ số tận cùng là 0; 5 vì như thế tích sẽ tận cùng là chữ số 0 (trái với bài toán)
Do đó 4 số phải tìm chỉ có thể có chữ số tận cùng liên tiếp là 1, 2, 3, 4 và 6, 7, 8, 9
	Ta có : 
	24 024 > 10 000 = 10 x 10 x 10 x 10 
	24 024 < 160 000 = 20 x 20 x 20 x 20
Nên tích của 4 số đó là :
	11 x 12 x 13 x 14 hoặc 
 16 x 17 x 18 x 19
Có : 11 x 12 x 13 x 14 = 24 024 
 16 x 17 x 18 x 19 = 93 024.
Vậy 4 số phải tìm là : 11, 12, 13, 14.
Bài 4 : Có thể tìm được 2 số tự nhiên sao cho hiệu của chúng nhân với 18 được 1989 không?
	Giải :
	Ta thấy số nào nhân với số chẵn tích cũng là 1 số chẵn. 18 là số chẵn mà 1989 là số lẻ.
	Vì vậy không thể tìm được 2 số tự nhiên mà hiệu của chúng nhân với 18 được 1989.
Bài 5 : Có thể tìm được 1 số tự nhiên nào đó nhân với chính nó rồi trừ đi 2 hay 3 hay 7, 8 lại được 1 số tròn chục hay không.
	Giải :
Số trừ đi 2,3 hay 7,8 là số tròn chục thì phải có chữ số tận cùng là 2,3 hay 7 hoặc 8.
	Mà các số tự nhiên nhân với chính nó có các chữ số tận cùng là 0 ,1, 4, 5, 6, 9.
Vì : 1 x 1 = 1 4 x 4 = 16 	 7 x 7 = 49 
	 2 x 2 = 4 	 5 x 5 = 25	 8 x 8 = 64
	 3 x3 = 9	 6 x6 = 36	 9 x 9 = 81
	 10 x10 = 100
	Do vậy không thể tìm được số tự nhiên như thế .
Bài 6: Có số tự nhiên nào nhân với chính nó được kết quả là một số viết bởi 6 chữ số 1 không?
	Giải :
	Gọi số phải tìm là A (A > 0 )
	Ta có :	A x A = 111 111 
Vì 1 + 1 +1 + 1+ 1+ 1+ = 6 chia hết cho 3 nên 111 111 chia hết cho 3.
Do vậy A chia hết cho 3, mà A chia hết cho 3 nên A ì A chia hết cho 9 nhưng 111 111 không chia hết cho 9.
	Vậy không có số nào như thế .
Bài 7: 
a, Số 1990 có thể là tích của 3 số tự nhiên liên tiếp được không?
	Giải :
	Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không là tích của 3 số tự nhiên liên tiếp vì :
	1 + 9 + 9 + 0 = 19 không chia hết cho 3.
b, Số 1995 có thể là tích của 3 số tự nhiên liên tiếp không?
	3 số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp.
c, Số 1993 có phải là tổng của 3 số tự nhiên liên tiếp không?
	Tổng của 3 số tự nhiên liên tiếp thì sẽ bằng 3 lần số ở giữa do đó số này phải chia hết cho 3.
	Mà 1993 = 1 + 9 + 9 + 3 = 22 Không chia hết cho 3
	Nên số 1993 không là tổng của 3 số tự nhiên liên tiếp.
Bài 8 : Tính 1 x 2 x 3 x 4 x 5 x ............ x 48 x 49 tận cùng là bao nhiêu chữ số 0?
	Giải :
	Trong tích đó có các thừa số chia hết cho 5 là :
	5, 10, 15, 20, 25, 30, 35, 40, 45.
Hay 5 = 1 x 5 ; 10 = 2 x 5 ; 15 = 3 x 5; ........; 45 = 9 x 5.
	Mỗi thừa số 5 nhân với 1 số chẵn cho ta 1 số tròn chục. mà tích trên có 10 thừa số 5 nên tích tận cùng bằng 10 chữ số 0.
Bài 9 : Bạn Toàn tính tổng các chẵn trong phạm vi từ 20 đến 98 được 2025. Không thực hiện tính tổng em cho biết Toàn tính đúng hay sai?
	Giải :
	Tổng các số chẵn là 1 số chẵn, kết quả toàn tính được 2025 là số lẻ do vậy toàn đã tính sai.
Bài 10 : Tùng tính tổng của các số lẻ từ 21 đến 99 được 2025. Không tính tổng đó em cho biết Tùng tính đúng hay sai?
	Giải :
	Từ 1 đến 99 có 50 số lẻ
	Mà từ 1 đến 19 có 10 số lẻ. Do vậy Tùng tính tổng của số lượng các số lẻ là : 50 – 10 = 40 (số)
Ta đã biết tổng của số lượng chẵn các số lẻ là 1 số chẵn mà 2025 là số lẻ nên Tùng đã tính sai.
Bài 11 : Tích sau tận cùng bằng mấy chữ số 0?
	20 x 21 x 22 x 23 x . . . x 28 x 29 
	Giải :
	Tích trên có 1 số tròn chục là 20 nên tích tận cùng bằng 1 chữ số 0
Ta lại có 25 = 5 x 5 nên 2 thữa số 5 này khi nhân với 2 só chẵn cho tích tận cùng bằng 2 chữ số 0
	Vậy tích trên tận cùng bằng 3 chữ số 0.
Bài 12 : Tiến làm phép chia 1935 : 9 được thương là 216 và kghông còn dư. Không thực hiện cho biết Tiến làm đúng hay sai.
	Giải :
	Vì 1935 và 9 đều là số lẻ, thương giữa 2 số lẻ là 1 số lẻ. Thương Tiến tìm được là 216 là 1 số chẵn nên sai
Bài 13 : Huệ tính tích :
	2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 = 3 999
Không tính tích em cho biết Huệ tính đúng hay sai?
	Giải :	Trong tích trên có 1 thữa số là 5 và 1 thừa số chẵn nên tích phải tận cùng bằng chữ số 0. Vì vậy Huệ đã tính sai.
Bài 14 : Tích sau tận cùng bằng bao nhiêu chữ số 0 :
	13 x 14 x 15 x . . . x 22 
	Giải :
	Trong tích trên có thừa số 20 là số tròn chục nên tích tận cùng bằng 1 chữ số 0. Thừa số 15 khi nhân với 1 số chẵn cho 1 chữ số 0 nữa ở tích.
	Vậy tích trên có 2 chữ số 0.
	* BÀI TẬP VỀ NHÀ :
Bài 1/ Không làm phép tính hãy cho biết kết quả của mỗi phép tính sau có tận cùng bằng chữ số nào?
a, (1 999 + 2 378 + 4 545 + 7 956) – (315 + 598 + 736 + 89)
b, 1 x 3 x 5 x 7 x 9 x . . . x 99
c, 6 x 16 x 116 x 1 216 x 11 996
d, 31 x 41 x 51 x 61 x 71 x 81 x 91
e, 56 x 66 x 76 x 86 - 51 x 61 x 71 x 81
Bài 2/ Tích sau tận cùng bằng bao nhiêu chữ số 0
a, 1 x 2 x 3 x . . . x 99 x 100
b, 85 x 86 x 87 x . . . x 94
c, 11 x 12 x 13 x . . . x 62
Bài 3/ Không làm tính xét xem kết quả sau đúng hay sai? Giải thích tại sao?
a, 136 x 136 - 41 = 1960
b, ab x ab - 8557 = 0
Bài 4/ Có số nào chia cho 15 dư 8 và chia cho 18 dư 9 hay không?
Bài 5/ Cho số a = 1234567891011121314. . . được viết bởi các số tự nhiên liên tiếp. Số a có tận cùng là chữ số nào? biết số a có 100 chữ số.
Bài 6/ Có thể tìm được số tự nhiên A và B sao cho :
(A + B) ì (A – B) = 2002. 
Dạng 2: Kĩ thuật tính và quan hệ giữa các thành phần của phép tính 
	* Các bài tập.
Bài 1: Khi cộng một số tự nhiên có 4 chữ số với một số tự nhiên có 2 chữ số, do sơ suất một học sinh đã đặt phép tính như sau :
	abcd
	 + eg
	Hãy cho biết kết quả của phép tính thay đổi như thế nào .
	Giải :
Khi đặt phép tính như vậy thì số hạng thứ hai tăng gấp 100 lần .Ta có :
	Tổng mới = SH1 + 100 x SH2
	 = SH1 + SH2 + 99 x SH2 
	 =Tổng cũ + 99 x SH2 
Vậy tổng mới tăng thêm 99 lần số hạng thứ hai.
Bài 2 :	Khi nhân 1 số tự nhiên với 6789, bạn Mận đã đặt tất cả các tích riêng thẳng cột với nhau như trong phép cộng nên được kết quả là 296 280. Hãy tìm tích đúng của phép nhân đó. 
	Giải :Khi đặt các tích riêng thẳng cột với nhau như trong phép cộng tức là bạn Mận đã lấy thừa số thứ nhất lần lượt nhân với 9, 8, 7 và 6 rồi cộng kết quả lại. Do
	9 + 8 + 7 + 6 = 30
nên tích sai lúc này bằng 30 lần thừa số thứ nhất. Vậy thừa số thứ nhất là :
	296 280 : 30 = 9 876
	Tích đúng là :
	9 876 x 6789 = 67 048 164
Bài 3 : Khi chia 1 số tự nhiên cho 41, một học sinh đã chép nhầm chữ số hàng trăm của số bị chia là 3 thành 8 và chữ số hàng đơn vị là 8 thành 3 nên được thương là 155, dư 3. Tìm thương đúng và số dư trong phép chia đó.
	Giải :	Số bị chia trong phép chia sai là :
	41x 155 + 3 = 6358
	Số bị chia của phép chia đúng là : 6853
	Phép chia đúng là :
	6853 : 41 = 167 dư 6
Bài 4 : Hiệu của 2 số là 33, lấy số lớn chia cho số nhỏ được thương là 3 và số dư là 3. Tìm 2 số đó
Giải :
	Theo bài ra ta có
Số nhỏ :	|	| 	3
Số lớn :	|	|	|	| |
 33
	Số nhỏ là :
	(33 - 3) : 2 = 15
	Số lớn là :
	33 + 15 = 48
	Đáp số 15 và 48.
Bài 5 : Hai số thập phân có tổng bằng 55,22; Nếu dời dấu phẩy của số bé sang trái 1 hàng rồi lấy hiệu giữa số lớn và nó ta được 37, 07. Tìm 2 số đó.
	Giải :
	Khi dời dấu phẩy của số bé sang trái 1 hàng tức là ta đã giảm số bé đi 10 lần 
Theo bài ra ta có sơ đồ :
37,07
Số lớn : | | 	 |	 55,22 
Số bé	 : | | | | | | | | | | | 
	Nhìn vào sơ đồ ta thấy :
	11 lần số bé mới là :
	55,22 - 37,07 = 18,15
	Số bé là :
	18,15 : 11 x 10 = 16,5
	Số lớn là :
	55,22 - 16,5 = 38,2
	Đáp số : SL : 38,2; SB : 16,5.
Bài 6 : Hai số thập phân có hiệu là 5,37 nếu dời dấu phẩy của số lớn sang trái 1 hàng rồi cộng với số bé ta được 11,955. Tìm 2 số đó. 
Giải:
	Khi dời dấu phẩy của số lớn sang trái 1 hàng tức là ta đã giảm số đó đi 10 lần
	Ta có sơ đồ :
Số lớn : | | | | | | | | | | |
Số bé : | | |
	1/10 số lớn + số bé = 11,955 mà số lớn - số bé = 5,37.
Do đó 11 lần của 1/10 số lớn là : 11,955 + 5,37 = 17,325
	Số lớn là : 17,325 : 11 x 10 = 15,75
	Số bé là : 15,75 - 5,37 = 10, 38
	Đáp số : SL : 15,75 ; SB : 10, 38.
Bài 7 : Cô giáo cho học sinh làm phép trừ một số có 3 chữ số với một số có 2 chữ số, một học sinh đãng trí đã viết số trừ dưới cột hàng trăm của số bị tr ...  
(3 x 9 = 27) 
Số bi của Đông là : 
61 - (2 + 3 + 27) = 29 (viên). 
Bài 134. Thay các chữ cái dưới đây bởi các chữ số (chữ cái khác nhau thì thay bởi các chữ số khác nhau) sao cho kết quả các phép tính dưới đây đạt giá trị lớn nhất. 
CHUC + MUNG + THAY + CO + NHAN + NGAY - 20 - 11
Lời giải. Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0. 
Vậy ta có 2 đáp số : 
8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
Bài 135 : Thăng đố Long biết được số học sinh của trường Thăng cuối năm học vừa rồi có bao nhiêu học sinh được nhận thưởng ? Biết rằng số học sinh được nhận thưởng là số có ba chữ số và rất thú vị là chữ số hàng trăm, chữ số hàng đơn vị giống nhau. Nếu nhân số này với 6 thì được tích là số cũng có ba chữ số và trong tích đó có một chữ số 2.
Bài giải : Gọi số phi tìm là aba(a khác b;a ; b nhỏ hoặc bằng 9). Theo đầu bài ta có:
aba x 6 = deg (d khác 0 ; d; e; g nhỏ hơn hoặc bằng 9).
Nếu a lớn hơn hoặc bằng 2 thì tích nhiều hơn 3 chữ số.Vậy a = 1. Ta có 1b1x 6 = deg ( deg có một chữ số 2).
Do đó : g = 1 x 6 = 6 và d lớn hơn hoặc bằng 6. Vì thế : e = 2
Vì b x 6 = nên b = 2 hoặc b = 7.
Nếu b = 2 thì 121 x 6 = 726 (Đúng) 
Nếu b = 7 thì 171 x 6 = 1026 (Loại)
Vậy số học sịnh nhận thưởng là 121 bạn.
Bài 136 : Em hãy di chuyển hai que diêm lại đúng vị trí để kết quả phép tính là đúng :
Bài giải :
Cách 1 : Ta chuyển que diêm ở giữa chữ số 8 để có chữ số 0. Lấy que diêm đó 
ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 3 của số 2003 và đặt vào vị trí khác của chữ số 3 đó để chuyển số 2003 thành số 2002, ta có phép tính đúng :
Cách 2 : Ta chuyển que diêm ở giữa số 8 để có chữ số 0. lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602.
Lấy 1 que diêm ở chữ số 2 của số 602 và đặt vào vị trí khác của chữ số 2 đó để chuyển số 602 thành số 603, ta có phép tính đúng :
Bài 137 : Một bạn chọn hai số tự nhiên tuỳ ý, tính tổng của chúng rồi lấy tổng đó nhân với chính nó. Bạn ấy cũng làm tưng tự đối với hiệu của hai số mà mình đã chọn đó. Cuối cùng cộng hai tích tìm được với nhau. Hỏi rằng tổng của hai tích đó là số chẵn hay số lẻ ? Vì sao ?
Bài giải : Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ.
a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn.
b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn.
Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn.
Bài 138 : a) Hãy phân tích 20 thành tổng các số tự nhiên sao cho tích các số tự nhiên ấy cũng bằng 20.
b) Bạn có thể làm như thế với bất kì số tự nhiên nào được không ?
Bài giải : Phân tích 20 thành tích các số tự nhiên khác 1.
20 = 2 x 2 x 5 = 4 x 5 = 10 x 2 
Trường hợp : 2 x 2 x 5 = 20 thì tổng của chúng là : 2+ 2 + 5 = 9. Vậy để tổng bằng 20 thì phải thêm vào : 20 - 9 = 11, ta thay 11 bằng tổng của 11 số 1 khi đó tích sẽ không thay đổi. 
Lí luận tương tự với các trường hợp : 20 = 4 x 5 và 20 = 10 x 2. Ta có 3 cách phân tích như sau :
Cách 1 :
20 = 2 x 2 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 2 + 2 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 2 :
20 = 4 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 4 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 3 :
20 = 10 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 10 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. 
b) Một số chia hết cho 1 và chính nó sẽ không làm được như trên vì tích của 1với chính nó luôn nhỏ hơn tổng của 1 với chính nó.
Bài 139 : Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9.
Bài giải : Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 140 : Số này nằm trong phạm vi các số tự nhiên từ 1 đến 58. Khi viết "nó" không sử dụng các chữ số 1 ; 2 ; 3. Ngoài ra "nó" là số lẻ và không chia hết cho các số 3 ; 5 ; 7. Vậy "nó" là số nào ?
Bài giải : Nó là số lẻ nằm trong phạm vi các số tự nhiên từ 1 đến 58, khi viết nó không sử dụng các chữ số 1 ; 2 ; 3 nên nó có thể là : 5 ; 7 ; 9 ; 45 ; 47 ; 49 ; 55 ; 57 ; 59.
Nhưng nó không chia hết cho 3 ; 5 ; 7 nên trong các số trên chỉ có số 47 là thỏa mãn.
Vậy nó là số 47.
Bài 141 : Bạn Tân thực hiện phép chia một số cho 12 thì dư 1 và chia số đó cho 14 thì dư 2. Bạn hãy chứng tỏ Tân đã làm sai ít nhất một phép tính.
Bài giải : A = 12 x p + 1 = 14 x q + 2 (với p ; q là số tự nhiên)
Ta thấy : 12 x p là số chẵn nên A = 12 x p + 1 là số lẻ.
14 x q là số chẵn nên A = 14 x q + 2 là số chẵn.
A không thể vừa lẻ vừa chẵn nên chắc chắn có ít nhất một phép tính sai.
Bài 142 : Vườn cây bà Thược có số cây chưa đến 100 và có 4 loại cây : xoài, cam, mít, bưởi. Trong đó số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm1/4 số cây và còn lại là mít. Hãy tính xem mỗi loại có bao nhiêu cây ?
Bài giải : Số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm 1/4 số cây nên số cây trong vườn phải chia hết cho 4, 5, 6. Mà 6 = 2 x 3 nên số cây trong vườn phải chia hết cho 3, 4, 5. Số nhỏ hơn 100 chia hết cho 3, 4, 5 là 60. Vậy số cây trong vườn là 60 cây.
Số cây xoài trong vườn là : 60 : 5 = 12 (cây)
Số cây cam trong vườn là : 60 : 6 = 10 (cây)
Số cây bưởi trong vườn là : 60 : 4 = 15 (cây)
Số cây mít trong Vườn là : 60 - (12 + 10 + 15) = 23 (cây)
Đáp số : xoài : 12 cây ; cam : 10 cây ; bưởi : 15 cây ; mít : 23 cây
Bài 143 : Bạn hãy chia tấm bìa bên dưới thành 6 phần giống hệt nhau về hình dạng và mỗi phần có một bông hoa.
Bài giải : Ta chia tấm bìa thành các ô vuông nhỏ bằng nhau như trong hình vẽ sau :
Nhìn hình vẽ ta thấy tổng số ô vuông nhỏ là 18 ô. Do đó khi chia tấm bìa thành 6 phần giống hệt nhau về hình dạng thì mỗi phần sẽ có số ô là : 18 : 6 = 3 (ô) và hình dạng mỗi phần phải có dạng hình chữ L.
Ta có cách chia như sau : (cắt theo đường màu)
Bài 144 : Cho dãy các số chẵn liên tiếp : 2 ; 4 ; 6 ; 8 ; ... ; 998 ; 1000.
Sau khi điền thêm các dấu + hoặc dấu - vào giữa các số theo ý mình, bạn Bình thực hiện phép tính được kết quả là 2002 ; bạn Minh thực hiện phép tính được kết quả là 2006. Ai tính đúng ?
Bài giải : Từ 2 đến 1000 có : (1000 - 2) : 2 + 1 = 500 (số chẵn)
Tổng các số đó : N = (1000 + 2) x 500 : 2 = 250500. Số này chia hết cho 4.
Khi thay + a thành - a thì N bị giảm đi a x 2 cũng là số chia hết cho 4. Do đó 
kết quả cuối cùng phải là số chia hết cho 4. Bình tính được 2002, Minh tính được 2006 đều là số không chia hết cho 4. Vậy cả hai bạn đều tính sai.
Bài 145 : Trường Tiểu học Xuân Đỉnh tham gia hội khỏe Phù Đổng, có 11 học sinh đoạt giải, trong đó có 6 em giành ít nhất 2 giải, có 4 em giành ít nhất 3 giải và có 2 em giành mỗi người 4 giải. Hỏi trường đó đã giành được bao nhiêu giải ? 
Bài giải : Có 11 em đoạt giải, trong đó có 6 em giành ít nhất 2 giải nên số học sinh giành mỗi em 1 giải là : 11 - 6 = 5 (em). Có 6 em giành ít nhất 2 giải, trong đó có 4 em giành ít nhất 3 giải nên số em giành mỗi em 2 giải là : 6 - 4 = 2 (em). Có 4 em giành ít nhất 3 giải trong đó có có 2 em giành mỗi em 4 giải nên số em giành mỗi em 3 giải là : 4 - 2 = 2 (em). Số em giành từ 1 đến 4 giải là : 5 + 2 + 2 + 2 = 11 (em). Do đó không có em nào giành được nhiều hơn 4 giải. Vậy số giải mà trường đó giành được là : 1 x 5 + 2 x 2 + 3 x 2 + 4 x 2 = 23 (giải). 
Bài 146 : Tính nhanh tổng sau : 
Bài giải : Đặt tổng trên bằng A ta có : 
Bài 147 : Tìm số tự nhiên a để biểu thức : A = 4010 - 2005 : (2006 - a) có giá trị nhỏ nhất. 
Bài giải : Để A có giá trị nhỏ nhất thì số trừ 2005 : (2006 - a) có giá trị lớn nhất không vượt quá 4010. Để 2005 : (2006 - a) có giá trị lớn nhất thì số chia (2006 - a) có giá trị nhỏ nhất lớn hơn 0. 
Vậy 2006 - a = 1 
a = 2006 - 1 
a = 2005. 
Bài 148 : Một lớp có 29 học sinh. Trong một lần kiểm tra chính tả. bạn Xuân mắc 9 lỗi, còn các bạn trong lớp mắc ít lỗi hơn. Chứng minh rằng : Trong lớp có ít nhất 4 bạn có số lỗi bằng nhau (kể cả trường hợp số lỗi bằng 0). 
Bài giải : Vì các bạn trong lớp đều có ít lỗi hơn Xuân, nên các bạn chỉ có số lỗi từ 0 đến 8. Trừ Xuân ra thì số bạn còn lại là : 29 - 1 = 28 (bạn). Nếu chia các bạn 
còn lại thành các nhóm theo số lỗi thì tối đa có 9 nhóm. Nếu mỗi nhóm có không quá 3 bạn thì 9 nhóm sẽ có không quá 3 x 9 = 27 (bạn). Điều này mâu thuẫn với 
số bạn còn lại là 28 bạn. Chứng tỏ ít nhất phải có một nhóm có quá 3 bạn tức là trong lớp có ít nhất có 4 bạn có số lỗi bằng nhau. 
Bài 149 : Hợp tác xã Hòa Bình dự định xây dựng một khu vui chơi cho trẻ em trong xã. Vì thế họ đã mở rộng một mảnh đất hình chữ nhật để diện tích gấp ba lần diện tích ban đầu. Chiều rộng mảnh đất chỉ có thể tăng lên gấp đôi nên phải mở rộng thêm chiều dài. Khi đó mảnh đất trở thành hình vuông. Hãy tính diện tích khu vui chơi đó. Biết rằng chu vi mảnh đất ban đầu là 56 m. 
Bài giải : Gọi mảnh đất hình chữ nhật lúc đầu là ABCD, khi mở rộng mảnh đất hình chữ nhật để được mảnh đất hình vuông APMN có cạnh hình vuông gấp 2 lần chiều rộng mảnh đất hình chữ nhật ABCD và diện tích gấp 3 lần diện tích mảnh đất hình chữ nhật ấy. Khi đó diện tích của các mảnh đất hình chữ nhật ABCD, DCHN, BPMH bằng nhau. 
Mảnh đất hình chữ nhật BPMH có độ dài cạnh BH gấp 2 lần độ dài cạnh AD nên 
Nửa chu vi mảnh đất ban đầu là 56 m nên AD + AB = 56 : 2 = 28 (m). 
Ta có : Chiều rộng mảnh đất ban đầu (AD) là : 28 : (3 + 4) x 3 = 12 (m). 
Cạnh hình vuông APMN là : 12 x 2 = 24 (m). 
Diện tích khu vui chơi là : 24 x 24 = 576 (m2). 

Tài liệu đính kèm:

  • docT1.2.3.doc