Bài 1 : Tí có một số bi không quá 80 viên, trong đó số bi đỏ gấp 5 lần số bi xanh. Nếu Tí có thêm 3 viên bi xanh nữa thì số bi đỏ gấp 4 lần số bi xanh. Hỏi lúc đầu Tí có mấy viên bi đỏ, mấy viên bi xanh ?
Bài giải : Bài này có nhiều cách giải khác nhau, xin nêu một cách giải như sau
Ta thấy : Số bi xanh lúc đầu bằng 1/5 số bi đỏ.
Sau khi Tí có thêm 3 viên bi xanh nữa thì số bi xanh lúc đó bằng 1/4 số bi đỏ.
Do đó 3 viên bi ứng với số phần của số bi đỏ là :
Vậy số bi đỏ của Tí lúc đầu là :
Số bi xanh của Tí lúc đầu là : 60 : 5 = 12 (viên)
Vậy lúc đầu Tí có 60 viên bi đỏ và 12 viên bi xanh.
Vì 60 + 12 = 72 nên kết quả này thỏa mãn giả thiết về số bi của Tí không có quá 80 viên.
Bài 1 : Tí có một số bi không quá 80 viên, trong đó số bi đỏ gấp 5 lần số bi xanh. Nếu Tí có thêm 3 viên bi xanh nữa thì số bi đỏ gấp 4 lần số bi xanh. Hỏi lúc đầu Tí có mấy viên bi đỏ, mấy viên bi xanh ? Bài giải : Bài này có nhiều cách giải khác nhau, xin nêu một cách giải như sau Ta thấy : Số bi xanh lúc đầu bằng 1/5 số bi đỏ. Sau khi Tí có thêm 3 viên bi xanh nữa thì số bi xanh lúc đó bằng 1/4 số bi đỏ. Do đó 3 viên bi ứng với số phần của số bi đỏ là : Vậy số bi đỏ của Tí lúc đầu là : Số bi xanh của Tí lúc đầu là : 60 : 5 = 12 (viên) Vậy lúc đầu Tí có 60 viên bi đỏ và 12 viên bi xanh. Vì 60 + 12 = 72 nên kết quả này thỏa mãn giả thiết về số bi của Tí không có quá 80 viên. Bài 3 : Cho tổng : 1 + 2 + 3 + 4 + 5 + ... + 49 + 50. Liệu có thể liên tục thay hai số bất kì bằng hiệu của chúng cho tới khi được kết quả là 0 hay không ? Bài giải : Ta đặt A = 1 + 2 + 3 + 4 + 5 + ... + 49 + 50. Dãy số tự nhiên liên tiếp từ 1 đến 50 có 50 số, trong đó số các số lẻ bằng số các số chẵn nên có 50 : 2 = 25 (số lẻ). Vậy A là một số lẻ. Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a - b thì A giảm đi : (a + b) - (a - b) = 2 x b tức là giảm đi một số chẵn. Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ. Vì vậy không bao giờ nhận được kết quả là 0. Bài 4 : Bác Hà có hai tấm kính hình chữ nhật. Chiều rộng của mỗi tấm kính bằng 1/2 chiều dài của nó và chiều dài của tấm kính nhỏ đúng bằng chiều rộng của tấm kính to. Bác ghép hai tấm kính sát vào nhau và đặt lên bàn có diện tích 90 dm2 thì vừa khít. Hãy tính kích thước của mỗi tấm kính đó. Bài giải : Theo đầu bài, coi chiều rộng của tấm kính nhỏ là 1 đoạn thì chiều dài của nó là 2 đoạn như vậy và chiều rộng của tấm kính to cũng là 2 đoạn, khi đó chiều dài của tấm kính to là 4 đoạn như vậy. Nếu bác Hà ghép khít hai tấm kính lại với nhau sẽ được hình chữ nhật ABCD (hình vẽ), trong đó AMND là tấm kính nhỏ, MBCN là tấm kính to. Diện tích ABCD là 90 dm2. Chia hình chữ nhật ABCD thành 10 hình vuông nhỏ, mỗi cạnh là chiều rộng của tấm kính nhỏ thì diện tích của mỗi hình vuông nhỏ là 90 : 10 = 9 (dm2). Ta có 9 = 3 x 3, do đó cạnh hình vuông là 3 dm. Tấm kính nhỏ có chiều rộng 3 dm, chiều dài là 3 x 2 = 6 (dm). Tấm kính to có chiều rộng là 6 dm, chiều dài là 6 x 2 = 12 (dm). Bài 5 : Cho 7 phân số : Thăng chọn được hai phân số mà tổng có giá trị lớn nhất. Long chọn hai phân số mà tổng có giá trị nhỏ nhất. Tính tổng 4 số mà Thăng và Long đã chọn. Bài giải : Vậy ta sắp xếp được các phân số như sau : Tổng hai phân số có giá trị lớn nhất là : Tổng hai phân số có giá trị nhỏ nhất là : Do đó tổng bốn phân số mà Thăng và Long đã chọn là : Bài 6 : Tìm các chữ số a và b thỏa mãn : Bài giải : Vì 1/3 là phân số tối giản nên a chia hết cho 3 hoặc b chia hết cho 3. Giả sử a chia hết cho 3, vì 1/a 3 mà a < 10 do đó a = 6 ; 9. Vậy a = b = 6. Bài 7 : Viết liên tiếp các số từ trái sang phải theo cách sau : Số đầu tiên là 1, số thứ hai là 2, số thứ ba là chữ số tận cùng của tổng số thứ nhất và số thứ hai, số thứ tư là chữ số tận cùng của tổng số thứ hai và số thứ ba. Cứ tiếp tục như thế ta được dãy các số như sau : 1235831459437...... Trong dãy trên có xuất hiện số 2005 hay không ? Bài giải : Giả sử trong số tạo bởi cách viết như trên có xuất hiện nhóm chữ 2005 thì ta có : 2 + 0 là số có chữ số tận cùng là 0 (vô lí). Vậy trong dãy trên không thể xuất hiện số 2005. Bài 8 : Có 5 đội tham gia dự thi toán đồng đội. Tổng số điểm của cả 5 đội là 144 điểm và thật thú vị là cả 5 đội đều đạt một trong ba giải : nhất (30 điểm) ; nhì (29 điểm) ; ba (28 điểm). Chứng minh số đội đạt giải ba hơn số đội đạt giải nhất đúng một đội. Bài giải : Ta thấy trung bình cộng điểm của một đội giải nhất và một đội giải ba chính là số điểm của một đội giải nhì. Nếu số đội đạt giải nhất bằng số đội đạt giải ba thì tổng số điểm của cả 5 đội là : 29 x 5 = 145 (điểm) > 144 điểm, không thỏa mãn. Nếu số đội giải nhất nhiều hơn số đội giải ba thì tổng điểm 5 đội lớn hơn 145, cũng không thỏa mãn. Do đó số đội giải nhất phải ít hơn số đội giải ba. Khi đó ta xếp một đội giải nhất và một đội giải ba làm thành một cặp thì cặp này sẽ có tổng số điểm bằng hai đội giải nhì. Số đội giải ba thừa ra (không được xếp cặp với một đội giải nhất) chính là số điểm mà tổng điểm của 5 đội nhỏ hơn 145. Vì vậy số đội giải ba nhiều hơn số đội giải nhất bao nhiêu thì tổng điểm của 5 đội sẽ nhỏ hơn 145 bấy nhiêu. Vì tổng số điểm của cả 5 đội là 144 điểm nên số đội giải ba nhiều hơn số đội giải nhất là 145 - 144 = 1. Bài 9 : Cho (1), (2), (3), (4) là các hình thang vuông có kích thước bằng nhau. Biết rằng PQ = 4 cm. Tính diện tích hình chữ nhật ABCD. Bài giải : Vì các hình thang vuông PQMA, QMBC, QPNC, PNDA bằng nhau nên : MQ = NP = QP = 4 cm và CN = AD. Mặt khác AD = NP + QM = 4 + 4 = 8 (cm) Do đó : CN = AD = 8 cm. Diện tích hình thang vuông PQCN là : (CN + PQ) x NP : 2 = (8 + 4) x 4 : 2 = 24 (cm2) Suy ra : Diện tích hình chữ nhật ABCD là : 24 x 4 = 96 (cm2) Bài 10 : Tích sau đây có tận cùng bằng chữ số nào ? Bài giải : Tích của bốn thừa số 2 là 2 x 2 x 2 x 2 = 16 và 2003 : 4 = 500 (dư 3) nên ta có thể viết tích của 2003 thừa số 2 dưới dạng tích của 500 nhóm (mỗi nhóm là tích của bốn thừa số 2) và tích của ba thừa số 2 còn lại. Vì tích của các thừa số có tận cùng là 6 cũng là số có tận cùng bằng 6 nên tích của 500 nhóm trên có tận cùng là 6. Do 2 x 2 x 2 = 8 nên khi nhân số có tận cùng bằng 6 với 8 thì ta được số có tận cùng bằng 8 (vì 6 x 8 = 48). Vậy tích của 2003 thừa số 2 sẽ là số có tận cùng bằng 8. Bài 11 : Một người mang cam đi đổi lấy táo và lê. Cứ 9 quả cam thì đổi được 2 quả táo và 1 quả lê, 5 quả táo thì đổi được 2 quả lê. Nếu người đó đổi hết số cam mang đi thì được 17 quả táo và 13 quả lê. Hỏi người đó mang đi bao nhiêu quả cam ? Bài giải : 9 quả cam đổi được 2 quả táo và 1 quả lê nên 18 quả cam đổi được 4 quả táo và 2 quả lê. Vì 5 quả táo đổi được 2 quả lê nên 18 quả cam đổi được : 4 + 5 = 9 (quả táo). Do đó 2 quả cam đổi được 1 quả táo. Cứ 5 quả táo đổi được 2 quả lê nên 10 quả cam đổi được 2 quả lê. Vậy 5 quả cam đổi được 1 quả lê. Số cam người đó mang đi để đổi được 17 quả táo và 13 quả lê là : 2 x 17 + 5 x 13 = 99 (quả). Bài 12 : Tìm một số tự nhiên sao cho khi lấy 1/3 số đó chia cho 1/17 số đó thì có dư là 100. Bài giải : Vì 17 x 3 = 51 nên để dễ lí luận, ta giả sử số tự nhiên cần tìm được chia ra thành 51 phần bằng nhau. Khi ấy 1/3 số đó là 51 : 3 = 17 (phần) ; 1/17 số đó là 51 : 17 = 3 (phần). Vì 17 : 3 = 5 (dư 2) nên 2 phần của số đó có giá trị là 100 suy ra số đó là : 100 : 2 x 51 = 2550. Bài 13 : Tuổi của con hiện nay bằng 1/2 hiệu tuổi của bố và tuổi con. Bốn năm trước, tuổi con bằng 1/3 hiệu tuổi của bố và tuổi con. Hỏi khi tuổi con bằng 1/4 hiệu tuổi của bố và tuổi của con thì tuổi của mỗi người là bao nhiêu ? Bài giải : Hiệu số tuổi của bố và con không đổi. Trước đây 4 năm tuổi con bằng 1/3 hiệu này, do đó 4 năm chính là : 1/2 - 1/3 = 1/6 (hiệu số tuổi của bố và con). Số tuổi bố hơn con là : 4 : 1/6 = 24 (tuổi). Khi tuổi con bằng 1/4 hiệu số tuổi của bố và con thì tuổi con là : 24 x 1/4 = 6 (tuổi). Lúc đó tuổi bố là : 6 + 24 = 30 (tuổi). Bài 14 : Hoa có một sợi dây dài 16 mét. Bây giờ Hoa cần cắt đoạn dây đó để có đoạn dây dài 10 mét mà trong tay Hoa chỉ có một cái kéo. Các bạn có biết Hoa cắt thế nào không ? Bài giải : Xin nêu 2 cách cắt như sau : Cách 1 : Gập đôi sợi dây liên tiếp 3 lần, khi đó sợi dây sẽ được chia thành 8 phần bằng nhau. Độ dài mỗi phần chia là : 16 : 8 = 2 (m) Cắt đi 3 phần bằng nhau thì còn lại 5 phần. Khi đó độ dài đoạn dây còn lại là : 2 x 5 = 10 (m) Cách 2 : Gập đôi sợi dây liên tiếp 2 lần, khi đó sợi dây sẽ được chia thành 4 phần bằng nhau. Độ dài mỗi phần chia là : 16 : 4 = 4 (m) Đánh dấu một phần chia ở một đầu dây, phần đoạn dây còn lại được gập đôi lại, cắt đi một phần ở đầu bên kia thì độ dài đoạn dây cắt đi là : (16 - 4) : 2 = 6 (m) Do đó độ dài đoạn dây còn lại là : 16 - 6 = 10 (m) Bài 15 : Một thửa ruộng hình chữ nhật được chia thành 2 mảnh, một mảnh nhỏ trồng rau và mảnh còn lại trồng ngô (hình vẽ). Diện tích của mảnh trồng ngô gấp 6 lần diện tích của mảnh trồng rau. Chu vi mảnh trồng ngô gấp 4 lần chu vi mảnh trồng rau. Tính diện tích thửa ruộng ban đầu, biết chiều rộng của nó là 5 mét. Bài giải : Diện tích mảnh trồng ngô gấp 6 lần diện tích mảnh trồng rau mà hai mảnh có chung một cạnh nên cạnh còn lại của mảnh trồng ngô gấp 6 lần cạnh còn lại của mảnh trồng rau. Gọi cạnh còn lại của mảnh trồng rau là a thì cạnh còn lại của mảnh trồng ngô là a x 6. Vì chu vi mảnh trồng ngô (P1) gấp 4 lần chu vi mảnh trồng rau (P2) nên nửa chu vi mảnh trồng ngô gấp 4 lần nửa chu vi mảnh trồng rau. Nửa chu vi mảnh trồng ngô hơn nửa chu vi mảnh trồng rau là : a x 6 + 5 - (a + 5) = 5 x a. Ta có sơ đồ : Độ dài cạnh còn lại của mảnh trồng rau là : 5 x 3 : (5 x a - 3 x a) = 7,5 (m) Độ dài cạnh còn lại của mảnh trồng ngô là : 7,5 x 6 = 45 (m) Diện tích thửa ruộng ban đầu là : (7,5 + 4,5) x 5 = 262,5 (m2) Bài 16 : Tôi đi bộ từ trường về nhà với vận tốc 5 km/giờ. Về đến nhà lập tức tôi đạp xe đến bưu điện với vận tốc 15 km/giờ. Biết rằng quãng đường từ nhà tới trường ngắn hơn quãng đường từ nhà đến bưu điện 3 km. Tổng thời gian tôi đi từ trường về nhà và từ nhà đến bưu điện là 1 giờ 32 phút. Bạn hãy tính quãng đường từ nhà tôi đến trường. Bài giải : Thời gian để đi 3 km bằng xe đạp là : 3 : 15 = 0,2 (giờ) Đổi : 0,2 giờ = 12 phút. Nếu bớt 3 km quãng đường từ nhà đến bưu điện thì thời gian đi cả hai quãng đường từ nhà đến trường và từ nhà đến bưu điện (đã bớt 3 km) là : 1 giờ 32 phút - 12 phút = 1 giờ 20 phút = 80 phút. Vận tốc đi xe đạp gấp vận tốc đi bộ là : 15 : 5 = 3 (lần) Khi quãng đường không đổi, vận tốc tỉ lệ nghịch với thời gian nên thời gian đi từ nhà đến trường gấp 3 lần thời gian đi từ nhà đến thư viện (khi đã bớt đi 3 km). Vậy : Thời gian đi từ nhà đến trường là : 80 : (1 + 3) x 3 = 60 (phút) ; 60 phút = 1 giờ Quãng đường từ nhà đến trường là : 1 x 5 = 5 (km) Bài 17 : Cho phân số : a) Có thể xóa đi trong tử số và mẫu số những số nào mà giá trị của phân số vẫn không thay đổi không ? b) Nếu ta thêm số 2004 vào mẫu số thì phải thêm số tự nhiên nào vào tử số để phân số không đổi ? Bài giải : = 45 / 270 = 1/6. a) Để giá trị của phân số không đổi thì ta phải x ... thứ hai. Cách 2. Lập bảng theo tuần lễ : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Trong 3 cột đầu tiên chỉ có cột 2 thích hợp với đầu bài toán. Cột này có 5 ngày thứ bảy. Vì ngày 23 là thứ bảy, nên ngày 25 là thứ hai. Bài 133. Bốn bạn Xuân, Hạ, Thu, Đông có tất cả 61 viên bi. Xuân có số bi ít nhất, Đông có số bi nhiều nhất và là số lẻ, Thu có số bi gấp 9 lần số bi của Hạ. Hãy cho biết mỗi bạn có bao nhiêu viên bi ? Lời giải. + Số bi của Thu gấp 9 lần số bi của Hạ nên tổng số bi của Thu và Hạ là một số chẵn. Tống số bi của bốn bạn là số lẻ, số bi của Đông là số lẻ, tổng số bi của Hạ và Thu là số lẻ ; do đó số bi của Xuân phải là số chẵn. + Số bi của Hạ phải là số bé hơn 4 vì nếu số đó là 4 thì số bi của Thu là 4 x 9 = 36. Khi đó ít nhất Đông có số bi là 37 thì chỉ riêng tổng số bi của Thu và Đông đã vượt quá tổng số bi của bốn bạn (36 + 37 = 73 > 61). + Nếu số bi của Xuân là 2 thì số bi của Hạ là 3, số bi của Thu là 27 (3 x 9 = 27) Số bi của Đông là : 61 - (2 + 3 + 27) = 29 (viên). Bài 134. Thay các chữ cái dưới đây bởi các chữ số (chữ cái khác nhau thì thay bởi các chữ số khác nhau) sao cho kết quả các phép tính dưới đây đạt giá trị lớn nhất. CHUC + MUNG + THAY + CO + NHAN + NGAY - 20 - 11 Lời giải. Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0. Vậy ta có 2 đáp số : 8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461 và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461 Bài 135 : Thăng đố Long biết được số học sinh của trường Thăng cuối năm học vừa rồi có bao nhiêu học sinh được nhận thưởng ? Biết rằng số học sinh được nhận thưởng là số có ba chữ số và rất thú vị là chữ số hàng trăm, chữ số hàng đơn vị giống nhau. Nếu nhân số này với 6 thì được tích là số cũng có ba chữ số và trong tích đó có một chữ số 2. Bài giải : Gọi số phi tìm là aba(a khác b;a ; b nhỏ hoặc bằng 9). Theo đầu bài ta có: aba x 6 = deg (d khác 0 ; d; e; g nhỏ hơn hoặc bằng 9). Nếu a lớn hơn hoặc bằng 2 thì tích nhiều hơn 3 chữ số.Vậy a = 1. Ta có 1b1x 6 = deg ( deg có một chữ số 2). Do đó : g = 1 x 6 = 6 và d lớn hơn hoặc bằng 6. Vì thế : e = 2 Vì b x 6 = nên b = 2 hoặc b = 7. Nếu b = 2 thì 121 x 6 = 726 (Đúng) Nếu b = 7 thì 171 x 6 = 1026 (Loại) Vậy số học sịnh nhận thưởng là 121 bạn. Bài 136 : Em hãy di chuyển hai que diêm lại đúng vị trí để kết quả phép tính là đúng : Bài giải : Cách 1 : Ta chuyển que diêm ở giữa chữ số 8 để có chữ số 0. Lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 3 của số 2003 và đặt vào vị trí khác của chữ số 3 đó để chuyển số 2003 thành số 2002, ta có phép tính đúng : Cách 2 : Ta chuyển que diêm ở giữa số 8 để có chữ số 0. lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 2 của số 602 và đặt vào vị trí khác của chữ số 2 đó để chuyển số 602 thành số 603, ta có phép tính đúng : Bài 137 : Một bạn chọn hai số tự nhiên tuỳ ý, tính tổng của chúng rồi lấy tổng đó nhân với chính nó. Bạn ấy cũng làm tưng tự đối với hiệu của hai số mà mình đã chọn đó. Cuối cùng cộng hai tích tìm được với nhau. Hỏi rằng tổng của hai tích đó là số chẵn hay số lẻ ? Vì sao ? Bài giải : Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ. a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn. b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn. Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn. Bài 138 : a) Hãy phân tích 20 thành tổng các số tự nhiên sao cho tích các số tự nhiên ấy cũng bằng 20. b) Bạn có thể làm như thế với bất kì số tự nhiên nào được không ? Bài giải : Phân tích 20 thành tích các số tự nhiên khác 1. 20 = 2 x 2 x 5 = 4 x 5 = 10 x 2 Trường hợp : 2 x 2 x 5 = 20 thì tổng của chúng là : 2+ 2 + 5 = 9. Vậy để tổng bằng 20 thì phải thêm vào : 20 - 9 = 11, ta thay 11 bằng tổng của 11 số 1 khi đó tích sẽ không thay đổi. Lí luận tương tự với các trường hợp : 20 = 4 x 5 và 20 = 10 x 2. Ta có 3 cách phân tích như sau : Cách 1 : 20 = 2 x 2 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1. 20 = 2 + 2 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. Cách 2 : 20 = 4 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1. 20 = 4 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. Cách 3 : 20 = 10 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1. 20 = 10 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. b) Một số chia hết cho 1 và chính nó sẽ không làm được như trên vì tích của 1với chính nó luôn nhỏ hơn tổng của 1 với chính nó. Bài 139 : Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9. Bài giải : Vì a chia cho 2 dư 1 nên a là số lẻ. Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6. Do đó a phải có tận cùng là 1. - Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài). - Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9). Vì 171 : 7 = 24 dư 3 nên a = 171. Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171. Bài 140 : Số này nằm trong phạm vi các số tự nhiên từ 1 đến 58. Khi viết "nó" không sử dụng các chữ số 1 ; 2 ; 3. Ngoài ra "nó" là số lẻ và không chia hết cho các số 3 ; 5 ; 7. Vậy "nó" là số nào ? Bài giải : Nó là số lẻ nằm trong phạm vi các số tự nhiên từ 1 đến 58, khi viết nó không sử dụng các chữ số 1 ; 2 ; 3 nên nó có thể là : 5 ; 7 ; 9 ; 45 ; 47 ; 49 ; 55 ; 57 ; 59. Nhưng nó không chia hết cho 3 ; 5 ; 7 nên trong các số trên chỉ có số 47 là thỏa mãn. Vậy nó là số 47. Bài 141 : Bạn Tân thực hiện phép chia một số cho 12 thì dư 1 và chia số đó cho 14 thì dư 2. Bạn hãy chứng tỏ Tân đã làm sai ít nhất một phép tính. Bài giải : A = 12 x p + 1 = 14 x q + 2 (với p ; q là số tự nhiên) Ta thấy : 12 x p là số chẵn nên A = 12 x p + 1 là số lẻ. 14 x q là số chẵn nên A = 14 x q + 2 là số chẵn. A không thể vừa lẻ vừa chẵn nên chắc chắn có ít nhất một phép tính sai. Bài 142 : Vườn cây bà Thược có số cây chưa đến 100 và có 4 loại cây : xoài, cam, mít, bưởi. Trong đó số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm1/4 số cây và còn lại là mít. Hãy tính xem mỗi loại có bao nhiêu cây ? Bài giải : Số cây xoài chiếm 1/5 số cây, số cây cam chiếm 1/6 số cây, số cây bưởi chiếm 1/4 số cây nên số cây trong vườn phải chia hết cho 4, 5, 6. Mà 6 = 2 x 3 nên số cây trong vườn phải chia hết cho 3, 4, 5. Số nhỏ hơn 100 chia hết cho 3, 4, 5 là 60. Vậy số cây trong vườn là 60 cây. Số cây xoài trong vườn là : 60 : 5 = 12 (cây) Số cây cam trong vườn là : 60 : 6 = 10 (cây) Số cây bưởi trong vườn là : 60 : 4 = 15 (cây) Số cây mít trong Vườn là : 60 - (12 + 10 + 15) = 23 (cây) Đáp số : xoài : 12 cây ; cam : 10 cây ; bưởi : 15 cây ; mít : 23 cây Bài 143 : Bạn hãy chia tấm bìa bên dưới thành 6 phần giống hệt nhau về hình dạng và mỗi phần có một bông hoa. Bài giải : Ta chia tấm bìa thành các ô vuông nhỏ bằng nhau như trong hình vẽ sau : Nhìn hình vẽ ta thấy tổng số ô vuông nhỏ là 18 ô. Do đó khi chia tấm bìa thành 6 phần giống hệt nhau về hình dạng thì mỗi phần sẽ có số ô là : 18 : 6 = 3 (ô) và hình dạng mỗi phần phải có dạng hình chữ L. Ta có cách chia như sau : (cắt theo đường màu) Bài 144 : Cho dãy các số chẵn liên tiếp : 2 ; 4 ; 6 ; 8 ; ... ; 998 ; 1000. Sau khi điền thêm các dấu + hoặc dấu - vào giữa các số theo ý mình, bạn Bình thực hiện phép tính được kết quả là 2002 ; bạn Minh thực hiện phép tính được kết quả là 2006. Ai tính đúng ? Bài giải : Từ 2 đến 1000 có : (1000 - 2) : 2 + 1 = 500 (số chẵn) Tổng các số đó : N = (1000 + 2) x 500 : 2 = 250500. Số này chia hết cho 4. Khi thay + a thành - a thì N bị giảm đi a x 2 cũng là số chia hết cho 4. Do đó kết quả cuối cùng phải là số chia hết cho 4. Bình tính được 2002, Minh tính được 2006 đều là số không chia hết cho 4. Vậy cả hai bạn đều tính sai. Bài 145 : Trường Tiểu học Xuân Đỉnh tham gia hội khỏe Phù Đổng, có 11 học sinh đoạt giải, trong đó có 6 em giành ít nhất 2 giải, có 4 em giành ít nhất 3 giải và có 2 em giành mỗi người 4 giải. Hỏi trường đó đã giành được bao nhiêu giải ? Bài giải : Có 11 em đoạt giải, trong đó có 6 em giành ít nhất 2 giải nên số học sinh giành mỗi em 1 giải là : 11 - 6 = 5 (em). Có 6 em giành ít nhất 2 giải, trong đó có 4 em giành ít nhất 3 giải nên số em giành mỗi em 2 giải là : 6 - 4 = 2 (em). Có 4 em giành ít nhất 3 giải trong đó có có 2 em giành mỗi em 4 giải nên số em giành mỗi em 3 giải là : 4 - 2 = 2 (em). Số em giành từ 1 đến 4 giải là : 5 + 2 + 2 + 2 = 11 (em). Do đó không có em nào giành được nhiều hơn 4 giải. Vậy số giải mà trường đó giành được là : 1 x 5 + 2 x 2 + 3 x 2 + 4 x 2 = 23 (giải). Bài 146 : Tính nhanh tổng sau : Bài giải : Đặt tổng trên bằng A ta có : Bài 147 : Tìm số tự nhiên a để biểu thức : A = 4010 - 2005 : (2006 - a) có giá trị nhỏ nhất. Bài giải : Để A có giá trị nhỏ nhất thì số trừ 2005 : (2006 - a) có giá trị lớn nhất không vượt quá 4010. Để 2005 : (2006 - a) có giá trị lớn nhất thì số chia (2006 - a) có giá trị nhỏ nhất lớn hơn 0. Vậy 2006 - a = 1 a = 2006 - 1 a = 2005. Bài 148 : Một lớp có 29 học sinh. Trong một lần kiểm tra chính tả. bạn Xuân mắc 9 lỗi, còn các bạn trong lớp mắc ít lỗi hơn. Chứng minh rằng : Trong lớp có ít nhất 4 bạn có số lỗi bằng nhau (kể cả trường hợp số lỗi bằng 0). Bài giải : Vì các bạn trong lớp đều có ít lỗi hơn Xuân, nên các bạn chỉ có số lỗi từ 0 đến 8. Trừ Xuân ra thì số bạn còn lại là : 29 - 1 = 28 (bạn). Nếu chia các bạn còn lại thành các nhóm theo số lỗi thì tối đa có 9 nhóm. Nếu mỗi nhóm có không quá 3 bạn thì 9 nhóm sẽ có không quá 3 x 9 = 27 (bạn). Điều này mâu thuẫn với số bạn còn lại là 28 bạn. Chứng tỏ ít nhất phải có một nhóm có quá 3 bạn tức là trong lớp có ít nhất có 4 bạn có số lỗi bằng nhau.
Tài liệu đính kèm: