Rèn kĩ năng giải Toán về tỉ số phần trăm cho học sinh lớp 5

Rèn kĩ năng giải Toán về tỉ số phần trăm cho học sinh lớp 5

I. ĐẶT VẤN ĐỀ:

Chương trình môn toán lớp 5 là một bộ phận của chương trình môn toán ở bậc tiểu học. Chương trình tiếp tục thực hiện những yêu cầu đổi mới về giáo dục toán học “ giai đoạn học tập sâu” (so với giai đoạn trước), góp phần đổi mới giáo dục phổ thông, nhằm đáp ứng những yêu cầu của giáo dục và đào tạo trong giai đoạn công nghiệp hoá, hiện đại hoá.

Một trong năm nội dung chương trình cơ bản của toán 5 thì nội dung về Giải toán có lời văn chiếm một thời lượng lớn. Trong đó mảng kiến thức giải toán về tỉ số phần trăm là một dạng toán khó, trìu tượng, đa dạng và chương trình rộng. Thế nhưng thời lượng dành cho phần này lại quá ít, chỉ 8 tiết vừa hình thành kiến thức mới vừa luyện tập.

Đối với HS tiểu học, các em đã được làm quen với những dạng toán cơ bản. Từ việc vẽ những sơ đồ cụ thể, các em dễ dàng tìm ra được các lời giải bài toán. Chẳng hạn bài toán về tìm hai số khi biết tổng và hiệu, tổng và tỉ, hiệu và tỉ của hai số đó.Tuy nhiên không phải lúc nào cũng vẽ được sơ đồ của bài toán ví dụ như bài toán về tỉ số phần trăm. Mặc dù đã biết cách tìm tỉ số phần trăm của hai số nhưng những bài toán áp dụng trong đời sống hàng ngày về tỉ số phần trăm vẫn là những điều khó đối với đa số học sinh. Chính vì vậy, với yêu cầu đặt ra là HS phải nắm vững cách giải 3 bài toán cơ bản:

+ Tìm tỉ số phần trăm của hai số

 

doc 16 trang Người đăng huong21 Lượt xem 1347Lượt tải 2 Download
Bạn đang xem tài liệu "Rèn kĩ năng giải Toán về tỉ số phần trăm cho học sinh lớp 5", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Rèn kĩ năng
giải toán về tỉ số phần trăm cho học sinh lớp 5
I. Đặt vấn đề:
Chương trình môn toán lớp 5 là một bộ phận của chương trình môn toán ở bậc tiểu học. Chương trình tiếp tục thực hiện những yêu cầu đổi mới về giáo dục toán học “ giai đoạn học tập sâu” (so với giai đoạn trước), góp phần đổi mới giáo dục phổ thông, nhằm đáp ứng những yêu cầu của giáo dục và đào tạo trong giai đoạn công nghiệp hoá, hiện đại hoá.
Một trong năm nội dung chương trình cơ bản của toán 5 thì nội dung về Giải toán có lời văn chiếm một thời lượng lớn. Trong đó mảng kiến thức giải toán về tỉ số phần trăm là một dạng toán khó, trìu tượng, đa dạng và chương trình rộng. Thế nhưng thời lượng dành cho phần này lại quá ít, chỉ 8 tiết vừa hình thành kiến thức mới vừa luyện tập. 
Đối với HS tiểu học, các em đã được làm quen với những dạng toán cơ bản. Từ việc vẽ những sơ đồ cụ thể, các em dễ dàng tìm ra được các lời giải bài toán. Chẳng hạn bài toán về tìm hai số khi biết tổng và hiệu, tổng và tỉ, hiệu và tỉ của hai số đó.Tuy nhiên không phải lúc nào cũng vẽ được sơ đồ của bài toán ví dụ như bài toán về tỉ số phần trăm. Mặc dù đã biết cách tìm tỉ số phần trăm của hai số nhưng những bài toán áp dụng trong đời sống hàng ngày về tỉ số phần trăm vẫn là những điều khó đối với đa số học sinh. Chính vì vậy, với yêu cầu đặt ra là HS phải nắm vững cách giải 3 bài toán cơ bản:
+ Tìm tỉ số phần trăm của hai số
+ Tìm một số phần trăm của một số
+ Tìm một số khi biết một số phần trăm của nó.
Khi HS có kĩ năng giải từng bài toán cụ thể, gặp những bài toán mang tính tổng hợp, ẩn làm thế nào để các em nhìn ra dạng toán, đưa về bài toán cơ bản hay một số bài toán khác có liên quan đến tỉ số phần trăm và giải được. Đó là câu hỏi khó-Tôi phải trăn trở và suy nghĩ. Cuối cùng tôi đã tìm ra một hướng đi, một giải pháp vận dụng vào thực tế của lớp mình và đã thu được kết quả khả quan. Tôi mạnh dạn đưa ra kinh nghiệm của bản thân: “Rèn kĩ năng giải toán về tỉ số phần trămcho học sinh lớp 5.
II. Giải quyết vấn đề
Trong thực tế dạy học ở bậc tiểu học hiện nay, hầu hết các trường đều thực hiện 9 - 10 buổi trên tuần. Đó là điều kiện thuận lợi giúp GV có thể “Bù” và “ Bồi” đúng đối tượng để các em thể hiện mình. Sau khi học nội dung giải toán tỉ số phần trăm, tôi nhận thấy năng lực giải toán và vận dụng thực tế của các em còn nhiều hạn chế ( nhất là đối với HS nhóm 1 ) nên rất nhiều em khi làm bài tập không nhận dạng được bài toán dẫn đến giải sai. Qua tìm hiểu đồng nghiệp, tôi biết được một số GV khi dạy dạng toán này đã không hiểu hết được ý đồ SGK nên dạy qua loa, áp đặt dẫn đến HS không nắm được bản chất của dạng toán - Với HS thì không chỉ ở lớp mình mà đây là dạng toán khó với “đại trà” và ‘phức tạp” với mũi nhọn . Chính vì thế, tôi đã lập ra kế hoạch như sau:
 Kiểm tra phân loại học sinh:
Đề bài
Bài 1: Lớp 5B có 24 học sinh nữ, 12 học sinh nam. Tìm tỉ số phần trăm của HS nam so với HS nữ.
Bài 2: 25% của sân trường diện tích 800 m2 có bóng cây che mát. Tính phần diện tích sân trường không có cây che?
Bài 3: Biết 35,5 km là 40% chiều dài của con đường. Tính chiều dài của con đường?
Bài 4: Tìm diện tích hình chữ nhật. Biết rằng nếu chiều dài tăng 20% và chiều rộng giảm 20% số đo thì diện tích bị giảm 30 m2
Kết quả thu được như sau:
Tổng số bài
Đúng 4 bài
Sai 1 bài
Sai 2 bài
Sai 3- 4 bài
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
35
7
20%
8
22,8%
10
28,6%
10
28,65%
Từ bảng khảo sát trên, ta có thể biết được tỉ lệ HS nắm và vận dụng vào bài tập chưa đều, nhiều em kĩ năng nhận dạng toán và giải chưa chắc chắn.
 Qua thực tế lớp mình, tôi hướng dẫn các em theo trình tự sau:
+ Trước hết kiểm tra, phân loại đối tượng HS trong lớp thật cụ thể: Giỏi, khá, trung bình, yếu kém; tìm hiểu nguyên nhân của việc giải toán sai của từng em là do chưa tập trung theo dõi bài, nhận dạng toán sai, lời giải sai hay làm tính sai,
+ Với những em do chưa tập trung chú ý dẫn đến giải nhầm thì GV nhắc nhở, dành thời gian, hướng dẫn, giúp đỡ các em từng bài toán và cách tính. Thường thì những em này tiếp thu rất nhanh. Còn những em nhận dạng toán sai, lời giải sai, làm tính sai,tức là chưa nắm được bản chất bài toán về tỉ số phần trăm. Tôi đã phân lớp thành 2 nhóm cơ bản ( Nhóm 1: HS trung bình và yếu thuộc dãy 1,2; Nhóm 2: HS khá giỏi thuộc dãy 3) và thực hiện hướng dẫn theo từng bước cụ thể như sau:
Củng cố luyện tập 3 bài toán cơ bản:
Dạng 1: 
Hướng dẫn HS luyện tập bài toán 1: Tìm tỉ số phần trăm của hai số
Phần lí thuyết:
* Trò chơi “Đố bạn”:
Một lớp học có 28 HS, trong đó có 7 em học giỏi toán. Hãy tìm tỉ số phần trăm HS giỏi toán so với HS cả lớp?
Sau khi đọc đề, nắm yêu cầu nhiều cánh tay dơ lên:
+ Em Thuận - Nhóm 1: Là 400% vì em lấy 28 : 7 x 100 = 400% ạ!
+ Em Nhi - Nhóm 2: Là 25% vì em lấy 7 : 28 = 0,25
 0,25 = 25% ạ! 
+ Em Bảo - Nhóm 2: Thưa cô, 7 em HS giỏi bằng số HS cả lớp mà của 100 là 25% ạ!
Tôi ghi cả 3 cách làm trên và gợi mở:
+ Bài toán cho gì? ( lớp có 28 HS, Giỏi toán7 em)
+ Bài toán yêu cầu tìm gì?( Tỉ số phần trăm HS giỏi toán so với HS cả lớp)
+ Muốn tìm tỉ số phần trăm HS giỏi toán so với HS cả lớp ta làm như thế nào? (Ta lấy số HS giỏi toán chia cho số HS cả lớp nhân với 100 rồi viết kí hiệu % vào bên phải số đó)
+ GV giải thích lại cho HS về ý nghĩa của tỉ số phần trăm: Tỉ số phần trăm của HS giỏi toán và học sinh cả lớp là 25% thì phải hiểu là: Coi số HS cả lớp là 100 phần thì số học sinh giỏi là 25 phần.
+ GV chỉ ra cho HS phân biệt: Phân số, tỉ số, tỉ số phần trăm.
+ Hiểu bản chất bài toán:
7 : 28 = 0, 25; 0,25 x 100 : 100 = 25 : 100 = 25%
GV giải thích thêm: = x 100 x = ( 0,25 x 100 ) % = 25 %; là %
+ Cách trình bày:
Tỉ số phần trăm HS giỏi toán so với HS cả lớp là:
7 : 28 = 0,25%
0,25 = 25%
 Đáp số: 25%
* Năm em nói lại cách giải đúng, Cả lớp nhẩm nhớ.
* Vậy muốn tìm tỉ số phần trăm của hai số ta làm như thế nào? (Muốn tìm tỉ số phần trăm của hai số ta làm như sau:
+ Tìm thương của hai số.
 	+ Nhân thương đó với 100 rồi viết thêm kí hiệu % vào bên phải tích tìm được.)
Phần luyện tập: 
Nhóm 1: 
Bài 1: Tìm tỉ số phần trăm của: 4 và 5; 5 và 8; 30 và 5
Bài 2: Trong vườn có 12 cây cam và 28 cây chanh. Tìm tỉ số phần trăm cây cam so với cây trong vườn?
Bài 3: Một người bỏ ra 42000đ tiền vốn để mua rau. Sau khi bán hết số rau, người đó thu được 52 500đ. Hỏi:
a.Tiền bán rau bằng bao nhiêu phần trăm tiền vốn?
b.Người đó thu lãi bao nhiêu phần trăm?
Nhóm 2: 
Bài 1: Trong dịp tết trường em dự định trồng 800 cây lấy gỗ, nhưng trường đã trồng được 1200 cây. Hỏi trường đó thực hiện được bao nhiêu phần trăm và vượt mức bao nhiêu phần trăm?
Bài 2: Vòi nước thứ nhất mỗi giờ chảy vào được thể tích của bể, vòi nước thứ hai mỗi giờ chảy vào được thể tích của bể. Hỏi cả hai vòi nước cùng chảy vào bể trong một giờ thì được bao nhiêu phần trăm thể tích của bể?
Bài 3: Lượng nước trong hạt tươi là 16 %. Người ta lấy 200 kg hạt tươi đem phơi khô thì lượng hạt đó giảm đi 20 kg. Tính tỉ số phần trăm lượng nước trong hạt phơi khô?
Sau khi phát đề, GV yêu cầu HS đọc kĩ đề, nắm yêu cầu và giải vào vở nháp, 6 em giải vào bảng nhóm. GV kiểm tra bài một số em, hướng dẫn tay đôi với những em giải chậm, kết hợp chấm. Sau 15 phút làm bài. GV cho HS dừng và chữa bài:
Nhóm 1:
Bài 1: HS đổi chéo vở và chữa bài, GV gắn bảng nhóm để HS đối chiếu. 
Kết quả:
 4 : 5 = 0,8 = 80% 5 : 8 = 0,625 = 62,5%	30 : 5 = 6 = 600%
GV gọi 3 em nói lại cách làm để cả nhóm ghi nhớ.
Bài 2: Một em đọc đề toán, cả nhóm theo dõi.
	+ Bài toán cho gì? Bài toán yêu cầu tìm gì? 
	+ Để tìm tỉ số phần trăm của cây cam so với số cây trong vườn ta làm như thế nào? HS nêu cách làm.
 	GV treo bảng bài làm của em Hoa để cả nhóm nhận xét: 
 Bài giải:
 Tỉ số % cây cam so với cây trong vườn là:
 12 : 28 = 0, 42 
 	 	0,42 = 42%
 Đáp số: 42%
Ai nhất trí với cách làm của bạn Hoa? Có hai em dơ tay.
GV gọi em đó nhận xét bài làm của bạn để nhìn ra chỗ chưa đúng với yêu cầu của bài toán, em Thái giải lại: 
	 Bài giải:
 Số cây trong vườn có là:
 	12 + 28 = 40 cây
 Tỉ số % cây cam so với cây trong vườn là:
 12 : 40 = 0, 3
 	 	 0,3 = 30%
 Đáp số: 30%
GV: So với bài toán một, bài toán hai có gì khác? ( Bài 1; Tìm tỉ số phần trăm của hai số. Bài hai ta phải tìm một số chưa biết rồi đưa bài toán về dạng cơ bản tìm tỉ số phần trăm của hai số).
Bài 3: 1 HS đọc đề, nắm yêu cầu và giải theo N4 vào bảng nhóm.
GV hướng dẫn: 
	+Tiền vốn mua rau là 42 000đ ứng với bao nhiêu phần trăm? ( 100%)
 + Để tính tỉ số phần trăm tiền bán rau và tiền vốn ta làm như thế nào?
 + Muốn xem người đó thu lãi bao nhiêu ta làm như thế nào?
HS giải, gắn bảng nhóm, chữa bài: 
Bài giải:
Tỉ số % tiền bán ra so với tiền vốn là:
52 500 : 42 000 = 1, 25
 1,25 = 125%
Số phần trăm tiền lãi là:
 125% - 100% = 25%
 Đáp số: 25%
Nhóm 2: 
Bài 1: Hướng dẫn
 + Nếu trường trồng được 800 cây tức là đã thực hiện được bao nhiêu phần trăm?
 + Muốn biết trường trồng được 1200 cây tức đã thực hiện được bao nhiêu % ta làm như thế nào?
Bài giải:
Cách 1: Trường đó đã thực hiện được phần trăm kế hoạch là:
12000 : 800 = 150% ( kế hoạch)
 Trường đó đã vượt mức kế hoạch là:
150% - 100% = 50% ( kế hoạch)
 Đáp số: 50 % kế hoạch
Cách 2: Số cây vượt mức là:
12000 - 800 = 400 (cây)
Số phần trăm cây vượt mức so với kế hoạch là:
 400 : 800 = 50% (kế hoạch)
 Đáp số: 50 % kế hoạch
Bài 2: Phân tích
 	+ Trước hết tính phân số chỉ lượng nước chảy vào bể sau một giờ của cả hai vòi, sau đó suy ra số phần trăm thể tích của bể phải tìm.
Bài giải:
 Trong một giờ cả hai vòi nước chảy vào bể là:
 + = ( thể tích bể)
Số phần trăm thể tích của bể mà hai vòi cùng chảy trong một giờ là:
 9 : 20 = 0,45
 0,45 = 45%
 Đáp số: 45 %
Bài 3: Phân tích: Lượng nước trong hạt tươi là 16% nên ta tìm được 200kg có lượng nước bao nhiêu. Từ đó tìm lượng nước còn lại trong hạt khô, tìm lượng hạt đã phơi khô đưa bài toán về tìm tỉ số phần trăm hai số để tìm lượng nước trong hạt phơi khô.
Bài giải:
Vì lượng nước chứa trong hạt tươi là 16% nên trong 200 kg hạt tươi có lượng nước đó là: 200 x 16 % = 32 kg
Sau khi phơi khô 200 kg hạt tươi thì lượng hạt đó nhẹ đi 20 kg, nên lượng còn lại trong hạt phơi khô là:
32 – 20 = 12 kg
 Lượng hạt đã phơi khô còn lại là:
200 – 20 = 180 kg
 Tỉ số phần trăm của lượng nước trong hạt phơi khô là:
12 : 180 = 6,7%
 Đáp số: 6,7%
Dạng 2: 
Luyện tập dạng tìm một số phần trăm của một số
Bài làm chung:
 Chiếc xe đã đi được 40% chiều dài củ ... thêm 6,4cm so với chiều rộng ban đầu chiếm bao nhiêu phần trăm.
Từ cách tính: Chiều rộng bằng diện tích chia cho chiều dài.
Ta có cách giải sau:
	Bài giải:
 Coi chiều rộng của hình chữ nhật ban đầu là 100%
 Coi chiều dài của hình chữ nhật ban đầu là 100%
 Coi diện tích của hình chữ nhật ban đầu là 100% 
 Thì chiều dài của hình chữ nhật sau khi giảm chiếm số phần trăm là:
100% - 15% = 85% (chiều dài ban đầu)
 Diện tích hình chữ nhậtkhi đó là:
100% + 2% =102%(diện tích ban đầu)
 Chiều rộng hình chữ nhật sau khi tăng 6,4 cm chiếm số phần trăm là:
102% : 85% = 120% (chiều rộng ban đầu)
 Như vậy, 6,4 chiếm số phần trăm là:
120% - 100% = 20%( chiều rộng ban đầu)
 Chiều rộng của hình chữ nhật ban đầu là:
6,4 : 20 x 100 = 32 cm
 Đáp số: 32cm
Bài 3: Chiều dài đáy của hình bình hành giảm đi 1,8 cm và chiều cao tăng lên 20% thì diện tích hình đó tăng lên 8%. Tính chiều dài đáy mới?
 Phân tích: Muốn tìm được chiều dài đáy mới ta phải tìm xem diện tích mới và chiều cao mới chiếm bao nhiêu phần trăm để tính chiều dài đáy cũ suy ra chiều dài đáy ban đầu.
 Từ cách tính chiều dài đáy bằng diện tích chia cho chu vi.
Ta có các cách giải sau:
Cách 1: Đổi 20% = 0,2; 8% = 0,08
Coi diện tích cũ là một đơn vị diện tích thì diện tích mới so với diện tích cũ sẽ là:
1 + 0,08 = 1,08
Coi chiều cao cũ là một đơn vị độ dài thì chiều cao mới so với chiều cao cũ là:
1 + 0,2 = 1,2
Do đó chiều dài đáy mới so với chiều dài đáy cũ sẽ là:
 1,08 : 1,2 = 0,9
Coi chiều dài đáy cũ là một đơn vị độ dài thì chiều dài đáy cũ bị giảm đi:
1 – 0,9 = 0,1
Theo đề bài, chiều dài đáy giảm đi 1,8cm nên 0,1 chiều dài đáy cũng chính là 1,8cm. Do đó chiều dài đáy cũ là:
1,8 – 0,1 = 18cm
 Chiều dài đáy mới là:
18 – 1,8 = 16,2 cm
 Đáp số: 16,2 cm
Cách 2:
Đổi 1,8 cm = cm
Coi diện tích cũ là 100% thì diện tích cũ so với diện tích mới sẽ là:
100% + 8% = 108%
 Coi chiều cao cũ là 100% thì chiều cao mới so với chiều cao cũ sẽ là:
100% + 20% = 120%
 Do đó chiều dài đáy mới so với chiều dài đáy cũ là:
108% : 120% = 90%
 Coi chiều dài đáy cũ là 100% thì chiều dài đáy cũ giảm đi là:
100% - 90% = 10%
Theo đầu bài chiều dài đáy giảm cm nên 10% cũng chính là cm
 Do đó chiều dài đáy cũ sẽ là:
 : 10% = 18cm
 Chiều dài đáy mới là:
18 – 1,8 = 16,2 cm
 Đáp số: 16,2 cm
Cách 3: Theo cách hai có chiều dài đáy cũ giảm đi 10% nên 10% chiều dài đáy cũ biểu thị 1,8cm nên 100% chiều dài đáy cũ biểu thị cho số đo độ dài là:
(1,8 x 100) : 10 = 18cm
 Chiều dài đáy mới là:
18 – 1,8 = 16,2 cm
 Đáp số: 16,2 cm
Cách 4: Theo cách 2 ta có chiều dài đáy cũ giảm đi 10% nên nếu coi chiều dài đáy cũ là 100% thì tỉ số của chiều dài đáy cũ bị giảm đi là:
100% : 10% = 10
 Số đo chiều dài cũ là:
1,8 x 10 = 18 cm
 Chiều dài đáy mới là:
18 – 1,8 = 16,2 cm
 Đáp số: 16,2 cm
Cách 5:
Theo cách 1 thì 0,1 chiều dài đáy cũ chính là 1,8cm nên chiều dài đáy cũ là:1,8,: 0,1 = 18cm
 Vì chiều dài đáy mới bằng 0,9 chiều dài đáy cũ nên chiều dài đáy mới là:
18 x 0,9 = 16,2 cm
 Đáp số: 16,2 cm
Bài 4: Một cánh đồng vụ này diện tích được mở rộng thêm 20% so với diện tích vụ trước nhưng do thời tiết nên năng suất lúa của vụ này bị giảm đi 20% so với vụ trước. Hỏi số thóc thu được của vụ này tăng hay giảm bao nhiêu phần trăm so với vụ trước?
 Phân tích:Muốn biết số thóc thu được của vụ này tăng hay giảm bao nhiêu phần trăm so với vụ trước ta phải đi tìm xem số thóc thu được của vụ này chiếm bao nhiêu phần trăm so với vụ trước.
 Từ cách tính: Số thóc thu được bằng năng suất lúa nhân với diện tích cấy lúa
Ta có cách giải sau:	
 Bài giải:
 Coi năng suất lúa của vụ trước là 100%
 Coi diện tích cấy lúa của vụ trước là 100%
 Coi số thóc thu được của vụ trước là 100%
 Thì năng suất lúa của vụ này là:
 100% - 20% = 80%( năng suất lúa vụ trước)
 Diện tích cấy lúa của vụ này là
 100% + 20% = 120%( diện tích lúa vụ trước)
 Số thóc của vụ này thu được chiếm số phần trăm so với vụ trước là:
 80% x 120% = 96%
Vì 96% < 100% nên số thóc vụ này thu được giảm hơn so với vụ trước và giảm số phần trăm là:
100% - 96% = 4%
 Đáp số: 4%
Bài 5 : Sản lượng của khu vực A hơn khu vực B là 26% mặc dù diện tích của khu vực A chỉ lớn hơn khu vực B là 5%. Hỏi năng suất thu hoạch của khu vực A nhiều hơn khu vực B là mấy phần trăm?
 Phân tích: Muốn biết năng suất thu hoạch của khu vực A nhiều hơn khu vực B là mấy phần trăm ta phải luôn coi B là 100% để tính A hoặc coi B là 1 để đưa về số thập phân.
 Từ cách tính: Năng suất = Sản lượng : Diện tích
 Ta có cách giải như sau:
Cách 1: Giả sử sản lượng lúa của khu vực B là 100 tấn trên điện tích là 10 ha thì năng suất khu vực B là:
100 : 10 = 10 ( tấn/ ha)
 Khi đó sản lượng lúa của khu vực A là:
100 + 26 = 126 (tấn)
 Diện tích của khu vực A là:
10 + 0,5 =10,5 (ha)
 Do đó năng suất của khu vực A là:
126 : 10,5 = 12 ( tấn/ ha)
 Năng suất khu vực A hơn năng suất khu vực B là:
12 – 10 = 2( tấn/ ha)
 Tỉ số phần trăm của năng suất của khu vực A hơn khu vực B là:
2 : 10 = 0,2 = 20 %
	 	Đáp số: 20 %
Cách 2: Coi sản lượng lúa của khu vực B là 1 đơn vị khối lượng và coi diện tích là 1 đơn vị diện tích thì năng suất của khu vực B là 1
 Khi đó sản lượng lúa của khu vực A là:
1 + 0,26 = 1,26
 Diện tích của khu vực A là:
1 + 0,05 = 1,05
 Do đó năng suất của khu vực A là:
1,26 : 1,05 = 1,2
Vì 1,2 = 120% nên năng suất của khu vực A hơn năng suất của khu vực B là:
120% - 100% = 20%
 Đáp số: 20 %
Cách 3:
 Coi sản lượng khu vực B là 100% thì sản lượng khu vực A là:
 100% + 26% = 126%
 Coi diện tích khu vực B là 100% thì diện tích khu vực A là:
100% + 5% = 105%
 Năng suất khu vực A là:
126 : 105 = 120%
 Năng suất khu vực A nhiều hơn năng suất khu vực B là:
 120% - 100% = 20%
 Đáp số: 20%
Bài 6: Giá vé vào xem bóng đá ở một sân vận động là 30 000đ một người. Sau khi giảm giá vé đi thì số người mua vé đã tăng thêm 20% và số tiền bán vé cũng tăng thêm 8%. Hỏi giá vé sau khi giảm là bao nhiêu tiền?
 Phân tích: Muốn biết giá vé sau khi giảm là bao nhiêu tiền ta sẽ đi tìm xem giá vé lúc đó so với giá vé khi chưa giảm giá chiếm bao nhiêu phần trăm.
 Từ cách tính: Giá vé bằng tổng số tiền bán vé chia cho số người mua vé.
Ta có cách giải bài toán như sau:
 Bài giải:
 Coi giá vé ban đầu là 100%
 Coi người mua vé ban đầu là 100%
 Coi số tiền bán vé ban đầu là 100%
 Thì số người mua vé sau khi giảm giá vé là:
100 % + 20% = 120%( số người ban đầu)
 Tổng số tiền bán vé lúc đó là:
 100% + 8% =108% ( tổng số tiền thu được ban đầu)
 Giá vé sau khi giảm giá chiếm số phần trăm so với giá vé ban đầu là:
 108% : 120% = 90%( giá vé ban đầu)
 Mà giá vé ban đầu là 30 000đ
 Vậy giá vé sau khi giảm giá là:
 30 000 x 90% = 27 000đ
Đáp số: 27 000đ
Bài 7: Mức lương của mỗi công nhân được tăng thêm 50% so với trước đây nhưng giá cả hàng hoá lại tăng thêm 20%. Hỏi với mức lương mới này thì lượng hàng hoá mua được tăng thêm bao nhiêu phần trăm so với trước đây?
 Phân tích (tương tự như bài 1)
 Dựa vào cách tính: Số lượng hàng hoá mua được bằng tổng số tiền lương chia cho giá cả hàng hoá.
Ta có cách giải bài toán như sau:
Bài giải:
 Coi mức lương trước đây của mỗi công nhân là 100%
 Coi giá cả hàng hoá trước đây là 100%
 Coi lượng hàng hoá mua được trước đây là 100%
 Thì mức lương trước đây của mỗi công nhân là:
 100% + 50% = 150% (Mức lương trước đây)
 Giá cả các loại hàng hoá hiện nay là:
 100% + 20% = 120% (Giá cả hàng hoá trước đây)
 Lượng hàng hoá mua được hiện nay là:
 150% : 120% = 125% (lượng hàng hoá trước đây)
 Như vậy với mức lương mới này thì lượng hàng hoá mua được tăng thêm số phần trăm so với trước đây là:
 125% - 100% = 25% 
 Đáp số: 25%
 Sau khi luyện tập giải toán về tỉ số phần trăm, tôi muốn kiểm tra xem với cách làm như vậy thì thông tin ngược sẽ thế nào. Tôi ra đề khảo sát như sau:
Nhóm 1: 
Bài 1: Số học sinh nữ của lớp 5C chiếm 54% số học sinh cả lớp. Hỏi lớp 5C có bao nhiêu học sinh, biết rằng lớp đó có 27 bạn nữ.
Bài 2: Sau khi giảm giá 10% thì bà Tư bán một chiếc áo được 54 000đ. hỏi nếu chưa giảm giá thì 10 chiếc áo cùng loại sẽ phải bán được bao nhiêu tiền?
Bài 3: Một học sinh đặt kế hoạch cho mình tháng này phải đạt tổng số điểm là 180 điểm. Do cố gắng, bạn đó đã đạt được 207 điểm. Hỏi:
Bạn đó đạt bao nhiêu phần trăm kế hoạch?
Vượt mức bao nhiêu phần trăm kế hoạch?
Nhóm 2:
Bài 1: ( ở bài 3 nhóm 1)
Bài 2: Diện tích hình chữ nhật tăng hay giảm bao nhiêu phần trăm nếu chiều dài giảm 20% số đo của nó và chiều rộng tăng 20% số đo của nó?
Bài 3: Một cửa hàng điện tử trong ngày khai trương đã bán hạ giá 10% vẫn còn lãi 17%. hỏi nếu không hạ giá thì cửa hàng lãi bao nhiêu phần trăm?
Kết quả thu được là:
Tổng số bài
Đúng 3 bài
Sai 1 bài
Sai 1.5 bài
Sai 3bài
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
Số lượng
Tỉ lệ
35
17
48.6
15
42,8
3
8,6
0
0
III. Kết luận:
 Trên đây là một số thủ thuật của cá nhân tôi đã thực hiện trong quá trình hướng dẫn học sinh lớp 5 luyện tập và mở rộng giải toán về tỉ số phần trăm. Kinh nghiệm này tôi cũng đã trao đổi với đồng nghiệp và đặc biệt được hai cô giáo Dương Thị Hiên và Trần Thị Thanh - Giáo viên khối năm tán thành, hưởng ứng, áp dụng và thu được kết quả rất tốt.
Qua những gì đã trình bày, có thể chốt lại các bước sau:
Phải hướng dẫn cụ thể từng dạng toán qua bài tập để học sinh hiểu được bản chất của 3 bài toán về tỉ số phần trăm.
Hướng dẫn học sinh phải kĩ càng, kiên trì, liên tục theo từng dạng từ dễ đến khó. 
Giúp HS tự làm bài theo khả năng của mình, tạo ra sự hỗ trợ, giúp đỡ lẫn nhau giữa các đối tượng học sinh.
Dạy học phải gắn với thực tế để học sinh vận dụng và tự đánh giá kết quả học tập của mình.
 Là một giáo viên trực tiếp giảng dạy tôi luôn có kế hoạch: “ Muốn đầu tư chất lượng mũi nhọn thì bằng mọi giá phải nâng cao được chất lượng đại trà” 
 Qua đây, tôi cũng mong muốn đề nghị các cấp giáo dục ngoài việc tổ chức các chuyên đề như: Chuyên đề liên trường để hâm nóng phương pháp và cách dạy từng dạng bài cho các khối lớp, chuyên đề bồi dưỡng học sinh giỏi nên tổ chức các chuyên đề, những buổi nói chuyện, giao lưu về những kinh nghiệm hướng dẫn, giúp đỡ học sinh yếu, trung bình để tránh ngồi nhầm lớp và mở rộng kiến thức học gắn với cuộc sống nhằm nâng cao chất lượng giáo dục trong nhà trường.
 Trên đây chỉ là sự trải nghiệm và vận dụng của bản thân, kính mong sự góp ý tận tình, thuyết phục, thực tiễn khả thi của quý nhà quản lí giáo dục, sự trao đổi chân tình, thẳng thắn của quý đồng nghiệp./.

Tài liệu đính kèm:

  • docren ki nang giai toan ve ti so phan tram di.doc