Toán 5 - Bài toán về chuyển động đều có thể giải bằng nhiều cách

Toán 5 - Bài toán về chuyển động đều có thể giải bằng nhiều cách

 Bài toán về chuyển động đều có thể giải bằng nhiều cách Với mỗi bài toán, tìm ra được lời giải là một niềm vui. Sẽ vui sướng và thú vị hơn nếu ta tìm ra được nhiều lời giải cho một bài toán. Hãy có nhiều suy nghĩ và cách tiếp cận khác nhau với mỗi đề toán, chúng ta sẽ tìm được nhiều lời giải hay hơn. ¸Áp dụng phương pháp giả thiết tạm chúng ta cùng giải một số bài toán sau:

Bài toán :

"Một người đi từ A đến B với vận tốc 15 km/h. Sau đó 1 giờ 30 phút, người thứ hai cũng rời A đi về B với vận tốc 20 km/h và đến B trước người thứ nhất 30 phút. Tính quãng đường AB".

Đọc qua, bài toán có vẻ rườm rà khó hiểu : đi sau, đến trước.

Đọc lại một lần nữa ta thấy: “đi sau 1 giờ 30 phút ; . đến trước 30 phút”. Như vậy là đi ít hơn 2 giờ. Vậy ta sẽ đưa bài toán trên về bài toán đơn giản hơn :

 Giả sử người thứ hai đi sau người thứ nhất 2 giờ thì hai người sẽ đến B cùng một lúc.

 Với suy nghĩ : Thời gian đuổi kịp nhau của hai động tử chuyển động cùng chiều bằng khoảng cách lúc hai động tử bắt đầu cùng chuyển động chia cho hiệu hai vận tốc, ta có 6 cách làm sau.

 

doc 4 trang Người đăng hang30 Lượt xem 780Lượt tải 0 Download
Bạn đang xem tài liệu "Toán 5 - Bài toán về chuyển động đều có thể giải bằng nhiều cách", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 Bài toán về chuyển động đều có thể giải bằng nhiều cách     Với mỗi bài toán, tìm ra được lời giải là một niềm vui. Sẽ vui sướng và thú vị hơn nếu ta tìm ra được nhiều lời giải cho một bài toán. Hãy có nhiều suy nghĩ và cách tiếp cận khác nhau với mỗi đề toán, chúng ta sẽ tìm được nhiều lời giải hay hơn. ¸Áp dụng phương pháp giả thiết tạm chúng ta cùng giải một số bài toán sau:
Bài toán : 
"Một người đi từ A đến B với vận tốc 15 km/h. Sau đó 1 giờ 30 phút, người thứ hai cũng rời A đi về B với vận tốc 20 km/h và đến B trước người thứ nhất 30 phút. Tính quãng đường AB".
Đọc qua, bài toán có vẻ rườm rà khó hiểu : đi sau, đến trước.
Đọc lại một lần nữa ta thấy: “đi sau 1 giờ 30 phút ; ... đến trước 30 phút”. Như vậy là đi ít hơn 2 giờ. Vậy ta sẽ đưa bài toán trên về bài toán đơn giản hơn :
         Giả sử người thứ hai đi sau người thứ nhất 2 giờ thì hai người sẽ đến B cùng một lúc.
          Với suy nghĩ : Thời gian đuổi kịp nhau của hai động tử chuyển động cùng chiều bằng khoảng cách lúc hai động tử bắt đầu cùng chuyển động chia cho hiệu hai vận tốc, ta có 6 cách làm sau.
          Cách 1: Trong 2 giờ người thứ nhất đi được:                 15 x 2 = 30 (km)
          Mỗi giờ người thứ hai đi nhanh hơn người thứ nhất là: 20 - 15 = 5 (km)
          Thời gian để người thứ hai đuổi kịp người thứ nhất là:    30 : 5 = 6 (giờ)
          Quãng đường AB dài:                                                      20 x 6 = 120 (km)
          Người thứ nhất đi chậm hơn người thứ hai nên đi nhiều thời gian hơn. Vậy nếu người thứ nhất cũng đi thời gian như người thứ hai hoặc người thứ hai cũng đi thời gian như người thứ nhất thì sao ? ... Ta có một số cách giải  sau.
          Cách 2: Giả sử người thứ hai đi với thời gian như người thứ nhất thì người thứ hai đi quãng đường nhiều hơn người thứ nhất là:               20 x 2 = 40 (km) 
         Vận tốc người thứ hai hơn người thứ nhất là: 20 - 15 = 5 (km/giờ)
         Thời gian người thứ nhất đi là:                         40 : 5 = 8 (giờ)
         Quãng đường AB dài:                                      15 x 8 = 120 (km)
         Cách 3 : Giả sử người thứ nhất đi với thời gian như người thứ hai thì người thứ nhất đi quãng đường ít hơn người thứ hai là : 15 x 2 = 30 (km)
         Một giờ người thứ nhất đi ít hơn người thứ hai 5 km nên thời gian người thứ hai đi là              30 : 5 = 6 (giờ) và ta tính được quãng đường AB là 20 x 6 = 120 (km)
 Theo suy nghĩ : cùng một quãng đường thì vận tốc tỉ lệ nghịch với thời gian ta có cách giải sau.
         Cách 4 : Gọi vận tốc người thứ nhất là v1 (km/h) ; người thứ hai là v2 (km/h) ; thời gian người thứ nhất đi quãng đường AB là t1 (giờ) ; người thứ hai là t2 (giờ) 
          Ta có : v1/v2 = 15/20 = 3/4 suy ra t1/t2 = 4/3
          Biết tỉ số t1/t2 = 4/3 và t1 - t2 = 2
          Ta tính được t1 = 8 (giờ) ; t2 = 6 (giờ)
          Do đó quãng đường AB dài : 15 x 8 = 120 (km)
        Thời gian người thứ hai đi ít hơn người thứ nhất là 2 giờ. Ta thử tính xem trong 1 km người thứ hai đi ít hơn người thứ nhất bao lâu ? Từ đó sẽ tìm được quãng đường AB. Ta có cách làm thứ 5.
         Cách 5 : Cứ 1 km người thứ nhất đi hết 1/15 giờ ; 1km người thứ hai đi hết 1/20 giờ
Trong 1 km người thứ hai đi ít hơn người thứ nhất là : 1/15 - 1/20 = 1/60 (giờ)
Vậy quãng đường AB dài : 2 : 1/15 = 120 (km)
Ta có thể giả thiết (gọi) thời gian đi của người thứ nhất, người thứ hai để có cách nào làm khác 
         Cách 6: Gọi thời gian đi của người thứ nhất là x (giờ)    thì thời gian đi của người thứ hai là x - 2 (giờ)
          Ta có : 20 x (x - 2) = 15 x x
                      20 x x - 40 = 15 x x
                      20 x x - 15 x x = 40
                     15 x x  = 40 
                             x = 8
           Vậy quãng đường AB dài: 15 x 8 = 180 (km)
          Cách 7 : Tương tự như cách 6 ta gọi thời gian đi của người thứ hai là y (giờ) thì thời gian đi của người thứ nhất là y+2 (giờ). Ta có 20 x y =15 x (y + 2) 
Ta tìm được y = 6 và quãng đường AB dài 20 x 6 = 120 (km).                                                          
  Hãy áp dụng một cách sáng tạo có cơ bản để tìm ra nhiều cách giải cho một bài toán. Luôn cố gắng tìm tòi để giỏi hơn.
        Bài tập áp dụng. Một chiếc ôtô đi từ tỉnh A đến tỉnh B hết 4 giờ. Nếu trong mỗi giờ chiếc ôtô này đi thêm được 14 km thì thời gian đi từ A đến B chỉ mất 3 giờ. Hãy tính khoảng cách giữa hai tỉnh A và B.                                                                                        
  (Đáp số : 168 km)
Dùng sơ đồ diện tích để giải bài toán có 3 đại lượng.
Sơ đồ diện tích được dùng để giải các bài toán có nội dung đề cập đến ba đại lượng. Giá trị của một trong ba đại lượng bằng tích các giá trị của hai đại lượng kia. Dùng sơ đồ diện tích chúng ta sẽ giải nhanh các bài toán đó vì đã đưa về bài toán trực quan là bài toán diện tích hình chữ nhật. Sau đây là một số thí dụ: 
Ví dụ 1: 
Một ô tô đi từ A đến B với vận tốc 30km/giờ, sau đó đi từ B quay về A với vận tốc 40km/giờ. Thời gian đi từ B về A ít hơn thời gian đi từ A đến B là 40 phút. Tính độ dài quãng đường AB. 
Phân tích: Vì quãng đường AB (s = v x t) không đổi, nên ta có thể xem vận tốc (v) là chiều dài của một hình chữ nhật và thời gian (t) là chiều rộng của hình chữ nhật đó. Vẽ sơ đồ: 
Giải: Ta có 40 phút = 2/3 giờ 
Nếu ô tô đi từ B về A với vận tốc 30 km/giờ thì sau khoảng thời gian dự định đi từ B về A, ô tô còn cách A một quãng đường là: 
30 x 2/3 = 20 (km) 
Sở dĩ có khoảng cách này là vì vận tốc xe giảm đi: 
40 - 30 = 10 (km/h) 
Thời gian ôtô dự định đi từ B về A là: 
20 : 10 = 2 (giờ) 
Quãng đường AB dài là: 
40 x 2 = 80 (km) 
Đáp số: 80 km 
Chú ý là s1 = s2 
Ví dụ 2: Bạn Toán đưa tiền dự định mua một số quyển vở loại 2500 đồng/ quyển. Nhưng đến cửa hàng chỉ còn vở loại 3000 đồng/quyển. Toán cứ băn khoăn có nên mua loại vở này không? Vì nếu mua thì số vở dự định bị hụt mất hai quyển. Tính số tiền bạn Toán mang đi? 
Phân tích: Vì số tiền bạn Toán mang đi không đổi, nên ta có thể xem giá tiền của mỗi loại vở là chiều dài của một hình chữ nhật và số quyển vở là chiều rộng của hình chữ nhật đó. Vẽ sơ đồ: 
Giải: Nếu bạn Toán mua số vở loại 2500 đồng/quyển bằng số vở định mua loại 3000 đồng/quyển thì số tiền còn thừa là: 
2 x 2500 = 5000 (đồng) 
Sở dĩ có số tiền thừa này là vì giá vở đã giảm: 
3000 - 2500 = 500 (đồng/quyển) 
Vậy số vở bạn Toán định mua loại 3000 đồng/quyển là: 
5000 : 500 = 10 (quyển vở) 
Số tiền bạn Toán mang đi là: 
3000 x 10 = 30000(đồng) 
Đáp số: 30000 đồng 
Các bạn thử dùng sơ đồ diện tích giải các bài toán sau: 
Bài 1: Một ôtô đi từ Vinh đến Hà Nội dự định đi với vận tốc 30 km/h. Nhưng do trời mưa nên chỉ đi được 25 km/h, nên đến Hà Nội muộn mất 2 giờ so với thời gian dự định. Tính quãng đường Vinh - Hà Nội? 
Bài 2: Bố bạn An năm nay 30 tuổi. Nếu lấy số tuổi bố bạn An cách đây 5 năm và số tuổi của An bây giờ cộng với 2 rồi nhân hai số đó với nhau thì cũng bằng số tuổi bố bạn An bây giờ nhân với số tuổi bạn An bây giờ. Tính tuổi bạn An bây giờ? 

Tài liệu đính kèm:

  • docBoi duong hoc sinh gioi toan lop 45(2).doc