Toán học lớp 5 - Bài ôn tập (phần 15)

Toán học lớp 5 - Bài ôn tập (phần 15)

Bài 131. Tính diện tích hình chữ nhật ABCD. Biết rằng diện tích phần màu vàng là 20cm2 và I là điểm chia AB thành 2 phần bằng nhau.

Lời giải. Kí hiệu S là diện tích của một hình. Nối D với I. Qua I và C vẽ các đường thẳng IP và CQ vuông góc với BD, IH vuông góc với DC.

Ta có SADB = SCDB = 1/2 SABCD SDIB = 1/2 SADB (vì có chung đường cao DA, IB = 1/2 AB), SDIB = 1/2 SDBC.

Mà 2 tam giác này có chung đáy DB

Nên IP = 1/2 CQ. SIDK = 1/2 SCDK (vì có chung đáy DK và IP = 1/2 CQ) SCDI = SIDK + SDKC = 3SDIK.

Ta có :

SADI = 1/2 AD x AI, SDIC = 1/2 IH x DC

Mà IH = AD, AI = 1/2 DC, SDIC = 2SADI nên SADI = 3/2 SDIK

Vì AIKD là phần được tô màu vàng nên SAIKD = 20(cm2)

SDAI + SIDK = 20(cm2)

SDAI + 2/3 SADI = 20(cm2)

SDAI = (3 x 20)/5 = 12 (cm2)

 

doc 6 trang Người đăng hang30 Lượt xem 541Lượt tải 0 Download
Bạn đang xem tài liệu "Toán học lớp 5 - Bài ôn tập (phần 15)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài 131. Tính diện tích hình chữ nhật ABCD. Biết rằng diện tích phần màu vàng là 20cm2 và I là điểm chia AB thành 2 phần bằng nhau. 
Lời giải. Kí hiệu S là diện tích của một hình. Nối D với I. Qua I và C vẽ các đường thẳng IP và CQ vuông góc với BD, IH vuông góc với DC. 
Ta có SADB = SCDB = 1/2 SABCD SDIB = 1/2 SADB (vì có chung đường cao DA, IB = 1/2 AB), SDIB = 1/2 SDBC. 
Mà 2 tam giác này có chung đáy DB 
Nên IP = 1/2 CQ. SIDK = 1/2 SCDK (vì có chung đáy DK và IP = 1/2 CQ) SCDI = SIDK + SDKC = 3SDIK. 
Ta có : 
SADI = 1/2 AD x AI, SDIC = 1/2 IH x DC 
Mà IH = AD, AI = 1/2 DC, SDIC = 2SADI nên SADI = 3/2 SDIK 
Vì AIKD là phần được tô màu vàng nên SAIKD = 20(cm2) 
SDAI + SIDK = 20(cm2) 
SDAI + 2/3 SADI = 20(cm2) 
SDAI = (3 x 20)/5 = 12 (cm2) 
Mặt khác SDAI = 1/2 SDAB (cùng chung chiều cao DA, AI = 1/2 AB) 
= 1/4 SABCD suy ra SABCD = 4 x SDAI = 4 x 12 = 48 (cm2). 
Bài 132. Nếu trong một tháng nào đó mà có 3 ngày thứ bảy đều là các ngày chẵn thì ngày 25 của tháng đó sẽ là ngày thứ mấy ? 
Lời giải. 
Cách 1. Trong một tháng nào đó có ba ngày thứ bảy là ngày chẵn thì chắc chắn còn có hai ngày thứ Bảy là ngày lẻ. Năm ngày thứ Bảy đó sắp xếp như sau : 
Thứ Bảy (1) chẵn
Thứ Bảy (2)   lẻ
Thứ Bảy (3) chắn
Thứ Bảy (4)   lẻ
Thứ Bảy (5) chẵn
Số ngày nhiều nhất trong một tháng là 31 ngày. Tháng này có 4 tuần và 3 ngày. Nếu thứ bảy đầu tiên là ngày mùng 4 thì tháng đó sẽ có số ngày là: 4 + 7 x 4 = 32 (ngày) ; trái với lịch thông thường. 
Vì thế thứ bảy đầu tiên (1) phải là ngày mùng 2 ; thứ 7 thứ tư sẽ là ngày: 2 + 7 x 3 = 23 
Vậy ngày 25 của tháng đó là ngày thứ hai. 
Cách 2. Lập bảng theo tuần lễ : 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Trong 3 cột đầu tiên chỉ có cột 2 thích hợp với đầu bài toán. Cột này có 5 ngày thứ bảy. Vì ngày 23 là thứ bảy, nên ngày 25 là thứ hai. 
Bài 133. Bốn bạn Xuân, Hạ, Thu, Đông có tất cả 61 viên bi. Xuân có số bi ít nhất, Đông có số bi nhiều nhất và là số lẻ, Thu có số bi gấp 9 lần số bi của Hạ. Hãy cho biết mỗi bạn có bao nhiêu viên bi ?
Lời giải. 
+ Số bi của Thu gấp 9 lần số bi của Hạ nên tổng số bi của Thu và Hạ là một số chẵn. Tống số bi của bốn bạn là số lẻ, số bi của Đông là số lẻ, tổng số bi của Hạ và Thu là số lẻ ; do đó số bi của Xuân phải là số chẵn. 
+ Số bi của Hạ phải là số bé hơn 4 vì nếu số đó là 4 thì số bi của Thu là 4 x 9 = 36. Khi đó ít nhất Đông có số bi là 37 thì chỉ riêng tổng số bi của Thu và Đông đã vượt quá tổng số bi của bốn bạn (36 + 37 = 73 > 61). 
+ Nếu số bi của Xuân là 2 thì số bi của Hạ là 3, số bi của Thu là 27 
(3 x 9 = 27) 
Số bi của Đông là : 
61 - (2 + 3 + 27) = 29 (viên). 
Bài 134. Thay các chữ cái dưới đây bởi các chữ số (chữ cái khác nhau thì thay bởi các chữ số khác nhau) sao cho kết quả các phép tính dưới đây đạt giá trị lớn nhất. 
CHUC + MUNG + THAY + CO + NHAN + NGAY - 20 - 11
Lời giải. Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0. 
Vậy ta có 2 đáp số : 
8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
Bài 135 : Thăng đố Long biết được số học sinh của trường Thăng cuối năm học vừa rồi có bao nhiêu học sinh được nhận thưởng ? Biết rằng số học sinh được nhận thưởng là số có ba chữ số và rất thú vị là chữ số hàng trăm, chữ số hàng đơn vị giống nhau. Nếu nhân số này với 6 thì được tích là số cũng có ba chữ số và trong tích đó có một chữ số 2.
Bài giải : Gọi số phi tìm là aba(a khác b;a ; b nhỏ hoặc bằng 9). Theo đầu bài ta có:
aba x 6 = deg (d khác 0 ; d; e; g nhỏ hơn hoặc bằng 9).
Nếu a lớn hơn hoặc bằng 2 thì tích nhiều hơn 3 chữ số.Vậy a = 1. Ta có 1b1x 6 = deg ( deg có một chữ số 2).
Do đó : g = 1 x 6 = 6 và d lớn hơn hoặc bằng 6. Vì thế : e = 2
Vì b x 6 = nên b = 2 hoặc b = 7.
Nếu b = 2 thì 121 x 6 = 726 (Đúng) 
Nếu b = 7 thì 171 x 6 = 1026 (Loại)
Vậy số học sịnh nhận thưởng là 121 bạn.
Bài 136 : Em hãy di chuyển hai que diêm lại đúng vị trí để kết quả phép tính là đúng :
Bài giải :
Cách 1 : Ta chuyển que diêm ở giữa chữ số 8 để có chữ số 0. Lấy que diêm đó 
ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 3 của số 2003 và đặt vào vị trí khác của chữ số 3 đó để chuyển số 2003 thành số 2002, ta có phép tính đúng :
Cách 2 : Ta chuyển que diêm ở giữa số 8 để có chữ số 0. lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602.
Lấy 1 que diêm ở chữ số 2 của số 602 và đặt vào vị trí khác của chữ số 2 đó để chuyển số 602 thành số 603, ta có phép tính đúng :
Bài 137 : Một bạn chọn hai số tự nhiên tuỳ ý, tính tổng của chúng rồi lấy tổng đó nhân với chính nó. Bạn ấy cũng làm tưng tự đối với hiệu của hai số mà mình đã chọn đó. Cuối cùng cộng hai tích tìm được với nhau. Hỏi rằng tổng của hai tích đó là số chẵn hay số lẻ ? Vì sao ?
Bài giải : Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ.
a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn.
b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn.
Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn.
Bài 138 : a) Hãy phân tích 20 thành tổng các số tự nhiên sao cho tích các số tự nhiên ấy cũng bằng 20.
b) Bạn có thể làm như thế với bất kì số tự nhiên nào được không ?
Bài giải : Phân tích 20 thành tích các số tự nhiên khác 1.
20 = 2 x 2 x 5 = 4 x 5 = 10 x 2 
Trường hợp : 2 x 2 x 5 = 20 thì tổng của chúng là : 2+ 2 + 5 = 9. Vậy để tổng bằng 20 thì phải thêm vào : 20 - 9 = 11, ta thay 11 bằng tổng của 11 số 1 khi đó tích sẽ không thay đổi. 
Lí luận tương tự với các trường hợp : 20 = 4 x 5 và 20 = 10 x 2. Ta có 3 cách phân tích như sau :
Cách 1 :
20 = 2 x 2 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 2 + 2 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 2 :
20 = 4 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 4 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 3 :
20 = 10 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 10 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. 
b) Một số chia hết cho 1 và chính nó sẽ không làm được như trên vì tích của 1với chính nó luôn nhỏ hơn tổng của 1 với chính nó.
Bài 139 : Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9.
Bài giải : Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 140 : Số này nằm trong phạm vi các số tự nhiên từ 1 đến 58. Khi viết "nó" không sử dụng các chữ số 1 ; 2 ; 3. Ngoài ra "nó" là số lẻ và không chia hết cho các số 3 ; 5 ; 7. Vậy "nó" là số nào ?
Bài giải : Nó là số lẻ nằm trong phạm vi các số tự nhiên từ 1 đến 58, khi viết nó không sử dụng các chữ số 1 ; 2 ; 3 nên nó có thể là : 5 ; 7 ; 9 ; 45 ; 47 ; 49 ; 55 ; 57 ; 59.
Nhưng nó không chia hết cho 3 ; 5 ; 7 nên trong các số trên chỉ có số 47 là thỏa mãn.
Vậy nó là số 47.

Tài liệu đính kèm:

  • doc10 DE DAP AN TOAN CHON LOC PHAN XV.doc