Bài ôn tập môn Toán 5 - Trường Tiểu học Sơn Long

Bài ôn tập môn Toán 5 - Trường Tiểu học Sơn Long

Bài 40 : Hãy khám phá “bí mật” của hình vuông rồi điền nốt bốn số tự nhiên còn thiếu vào ô trống.

Bài giải : “Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại).

Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có : a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1).

ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2).

Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3).

ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4).

Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13.

Vì b + d = 17 nên d = 17 - 13 = 4.

Vì a + b = 29 nên a = 29 - 13 = 16.

ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17.

Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau :

Nhận xét : Hình vuông trên gọi là hình vuông kì ảo (hoặc ma phương) cấp 4. Người ta đã nhìn thấy nó lần đầu tiên trong bản khắc của họa sĩ Đuy-rơ năm 1514. Các bạn có thể thấy : Tổng bốn số trong bốn ô ở bốn góc cũng bằng 34.

 

doc 48 trang Người đăng hang30 Lượt xem 778Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Bài ôn tập môn Toán 5 - Trường Tiểu học Sơn Long", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Bài 40 : Hãy khám phá “bí mật” của hình vuông rồi điền nốt bốn số tự nhiên còn thiếu vào ô trống.
Bài giải : “Bí mật” của hình vuông là tổng các số hàng ngang, hàng dọc và đường chéo của hình vuông đều bằng 34 (các bạn tự kiểm tra lại). 
Gọi các số cần tìm ở 4 góc của hình vuông là a, b, c, d. ở hàng ngang đầu tiên, ta có : a + 3 + 2 + b = 34, từ đó a + b = 34 - 5 = 29 (1). 
ở cột dọc đầu tiên ta có : a + 5 + 9 + d = 34, từ đó a + d = 34 - 14 = 20 (2). 
Từ (1) và (2) ta có : a + b - (a + d) = 29 - 20 = 9 hay b - d = 9 (3). 
ở một đường chéo, ta lại có : b + 6 + 11 + d = 34, từ đó b + d = 34 - 17 = 17 (4). 
Từ (3) và (4) ta có : (b - d) + (b + d) = 9 + 17 hay b + b = 26 ; b = 13. 
Vì b + d = 17 nên d = 17 - 13 = 4. 
Vì a + b = 29 nên a = 29 - 13 = 16. 
ở đường chéo thứ hai, ta có a + 10 + 7 + c = 34 hay a + c = 34 - 17 = 17. 
Từ đó c = 17 - 16 = 1. Thay a, b, c, d bằng các số vừa tìm được ta có hình vuông sau : 
Nhận xét : Hình vuông trên gọi là hình vuông kì ảo (hoặc ma phương) cấp 4. Người ta đã nhìn thấy nó lần đầu tiên trong bản khắc của họa sĩ Đuy-rơ năm 1514. Các bạn có thể thấy : Tổng bốn số trong bốn ô ở bốn góc cũng bằng 34.
Bài 41 : Bạn có thể cắt hình này : 
thành 16 hình: 
Bạn hãy nói rõ cách cắt nhé ! 
Bài giải : Tổng số ô vuông là : 
8 x 8 = 64 (ô) 
Khi ta cắt hình vuông ban đầu thành các phần nhỏ (hình chữ T), mỗi phần gồm 4 ô vuông thì sẽ được số hình là : 64 : 4 = 16 (hình) 
Ta có thể cắt theo nhiều cách khác nhau. Xin nêu một cách cắt như sau :
Bài 42 : Cho hình vuông như hình vẽ. Em hãy thay các chữ bởi các số thích hợp sao cho tổng các số ở các ô thuộc hàng ngang, cột dọc, đường chéo đều bằng nhau.
Bài giải : Vì tổng các số ở hàng ngang, cột dọc, đường chéo đều bằng nhau nên ta có :
a + 35 + b = a + 9 + d hay 26 + b = d (cùng trừ 2 vế đi a và 9). Do đó d - b = 26. b + g + d = 35 + g + 13 hay b + d = 48. Vậy b = (48 - 26 ) : 2 = 11, d = 48 - 11 = 37. d + 13 + c = d + 9 + a hay 4 + c = a (cùng trừ 2 vế đi d và 9). Do đó a - c = 4, a + g + c = 9 + g +39 hay a + c = 9 + 39 (cùng trừ 2 vế đi g), do đó a + c = 48. Vậy c = (48 - 4) : 2 = 22, a = 22 + 4 = 26. 35 + g + 13 = a + 35 + b = 26 + 35 + 11 = 72. Do đó 48 + g = 72 ; g = 72 - 48 = 24. Thay a = 26, b = 11, c = 22, d =37 , g = 24 vào hình vẽ ta có :
Bài 43 : Số chữ số dùng để đánh số trang của một quyển sách bằng đúng 2 lần số trang của cuốn sách đó. Hỏi cuốn sách đó có bao nhiêu trang ?
Bài giải : Để số chữ số bằng đúng 2 lần số trang quyển sách thì trung bình mỗi trang phải dùng hai chữ số. Từ trang 1 đến trang 9 có 9 trang gồm một chữ số, nên còn thiếu 9 chữ số. Từ trang 10 đến trang 99 có 90 trang, mỗi trang đủ hai chữ số. Từ trang 100 trở đi mỗi trang có 3 chữ số, mỗi trang thừa một chữ số, nên phải có 9 trang để “bù” đủ cho 9 trang gồm một chữ số. 
Vậy quyển sách có số trang là :
9 + 90 + 9 = 108 (trang).
Bài 44 : Người ta ngăn thửa đất hình chữ nhật thành 2 mảnh, một mảnh hình vuông, một mảnh hình chữ nhật. Biết chu vi ban đầu hơn chu vi mảnh đất hình vuông là 28 m. Diện tích của thửa đất ban đầu hơn diện tích hình vuông là 224 m2. Tính diện tích thửa đất ban đầu.
Bài giải :
Nửa chu vi hình ABCD hơn nửa chu vi hình AMND là :
28 : 2 = 14 (m).
Nửa chu vi hình ABCD là AD + AB.
Nửa chu vi hình AMND là AD + AM.
Do đó : MB = AB - AM = 14 (m).
Chiều rộng BC của hình ABCD là :
224 : 14 = 16 (m)
Chiều dài AB của hình ABCD là :
16 + 14 = 30 (m)
Diện tích hình ABCD là :
30 x 16 = 480 (m2).
Bài 45 : Trong một hội nghị có 100 người tham dự, trong đó có 10 người không 
biết tiếng Nga và tiếng Anh, có 75 người biết tiếng Nga và 83 người biết Tiếng Anh. Hỏi trong hội nghị có bao nhiêu người biết cả 2 thứ tiếng Nga và Anh ?
Bài giải : Cách 1 : Số người biết ít nhất 1 trong 2 thứ tiếng Nga và Anh là : 
100 - 10 = 90 (người).
Số người chỉ biết tiếng Anh là :
90 - 75 = 15 (người)
Số người biết cả tiếng Nga và tiếng Anh là :
83 - 15 = 68 (người)
Cách 2 : Số người biết ít nhất một trong 2 thứ tiếng là : 
100 - 10 = 90 (người). 
Số người chỉ biết tiếng Nga là :
90 - 83 = 7 (người). 
Số người chỉ biết tiếng Anh là :
90 - 75 = 15 (người). 
Số người biết cả 2 thứ tiếng Nga và Anh là :
90 - (7 + 15) = 68 (người)
Bài 46 : Một hình chữ nhật đã bị cắt đi một hình vuông ở một góc. Chỉ cần một nhát cắt thẳng, bạn hãy chia phần còn lại thành 2 phần có diện tích bằng nhau.
Giải : Chỉ cần các bạn biết được tính chất: Mọi đường thẳng đi qua tâm của hình chữ nhật để chia hình chữ nhật thành hai hình có diện tích bằng nhau.
Có thể chia được bằng nhiều cách:
Bài 47 : Cho biết : 4 x 396 x 0,25 : (x + 0,75) = 1,32.
Hãy tìm cách đặt thêm một dấu phẩy vào chỗ nào đó trong đẳng thức trên để giá trị của x giảm 297 đơn vị.
Bài giải : 
Theo đề bài : 4 x 396 x 0,25 : (x + 0,75) = 1,32 ; vì 4 x 0,25 = 1 nên ta có :
396 : (x + 0,75) = 1,32 hay x + 0,75 = 396 : 1,32 = 300.
Khi x giảm đi 297 đơn vị thì tổng x + 0,75 cũng giảm đi 297 đơn vị, tức là x + 0,75 = 300 - 297 = 3 hay x = 3 - 0,75 = 2,25. Trong đẳng thức x + 0,75 = 396 : 1,32 ; để x = 2,25 thì phải thêm dấu phẩy vào số 396 để có số 3,96.
Như vậy cần đặt thêm dấu phẩy vào giữa chữ số 3 và 9 của số 396 để x giảm đi 297 đơn vị. Các bạn có thể thử lại.
Bài 48 : Điền đủ 9 chữ số : 1, 2, 3, 4, 5, 6, 7, 8, 9 vào 9 ô trống sau để được phép tính đúng :
Bài giải : Bài toán chỉ có bốn cách điền như sau :
2 x 78 = 156 = 39 x 4
4 x 39 = 156 = 78 x 2
3 x 58 = 174 = 29 x 6
6 x 29 = 174 = 58 x 3
Bài 49 : Tính tuổi của ông biết: Thời niên thiếu chiếm 1/5 quãng đời của ông, 1/8 quãng đời còn lại là tuổi sinh viên, 1/7 số tuổi còn lại ông được học ở trường quân đội. Tiếp theo ông được rèn luyện 7 năm liền và sau đó được vinh dự trực tiếp đánh Mĩ. Như vậy thời gian đánh Mĩ vừa tròn 1/2 quãng đời của ông.
Bài giải : Phân số chỉ số tuổi còn lại sau thời niên thiếu của ông là : 1- 1/5 = 1/4 (số tuổi ông)
Thời sinh viên của ông có số năm là :
4/5 x 1/8 = 1/10 (số tuổi ông)
Số năm còn lại sau thời sinh viên của ông là : 4/5 - 1/10 = 7/10 (số tuổi ông) Số năm học ở trường quân đội của ông là : 7/10 x 1/7 = 1/10 (số tuổi ông)
Do đó: 7 năm rèn luyện của ông là : 1 - (1/5 + 1/10 + 1/10 + 1/2) = 1/10 (số tuổi ông) Suy ra số tuổi của ông là : 7: 1/10 = 70 (tuổi).
Bài 50 : Một miếng bìa hình chữ nhật, có chiều rộng 30 cm, chiều dài 40 cm. Người ta muốn cắt đi một hình chữ nhật nằm chính giữa miếng bìa trên sao cho cạnh của hai hình chữ nhật song song và cách đều nhau, đồng thời diện tích cắt đi bằng 1/2 diện tích miếng bìa ban đầu. Hỏi hai cạnh tương ứng của hai hình chữ nhật ban đầu và cắt đi cách nhau bao nhiêu ?
Bài giải : Chia miếng bìa ABCD thành các ô vuông, mỗi ô vuông có cạnh là 5 cm. Số ô vuông của miếng bìa đó là : 8 x 6 = 48 (ô vuông).
Số ô vuông của hình chữ nhật MNPQ là : 6 x 4 = 24 (ô vuông)
Vì 48 : 24 = 2 (lần) nên hình chữ nhật MNPQ có diện tích đúng bằng diện tích hình cắt đi. Mặt khác các cạnh của hình chữ nhật MNPQ song song và cách đều các cạnh tương ứng của miếng bìa ABCD. Vì vậy hình MNPQ đúng là hình chữ nhật bị cắt đi. Mỗi cặp cạnh tương ứng của hình ABCD và MNPQ cách nhau 5 cm.
Bài 51 : Tìm 4 số tự nhiên có tổng bằng 2003. Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư.
Bài giải : Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính :
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)
Bài 52 : Một người mang ra chợ 5 giỏ táo gồm hai loại. Số táo trong mỗi giỏ lần lượt là : 20 ; 25 ; 30 ; 35 và 40. Mỗi giỏ chỉ đựng một loại táo. Sau khi bán hết một giỏ táo nào đó, người ấy thấy rằng : Số táo loại 2 còn lại đúng bằng nửa số táo loại 1. Hỏi số táo loại 2 còn lại là bao nhiêu ?
Bài giải : Số táo người đó mang ra chợ là :
20 + 25 + 30 + 35 + 40 = 150 (quả)
Vì số táo loại 2 còn lại đúng bằng nửa số táo loại 1 nên sau khi bán, số táo còn lại phải chia hết cho 3.
Vì tổng số táo mang ra chợ là 150 quả chia hết cho 3 nên số táo đã bán phải chia hết cho 3. Trong các số 20, 25, 30, 35, 40 chỉ có 30 chia hết cho 3. Do vậy người ấy đã bán giỏ táo đựng 30 quả.
Tổng số táo còn lại là :
150 - 30 = 120 (quả)
Ta có sơ đồ biểu diễn số táo của loại 1 và loại 2 còn lại :
Số táo loại 2 còn lại là :
120 : (2 + 1) = 40 (quả)
Vậy người ấy còn lại giỏ đựng 40 quả chính là số táo loại 2 còn lại.
Đáp số : 40 quả
Bài 53 : Không được thay đổi vị trí của các chữ số đã viết trên bảng : 8 7 6 5 4 3 2 1 mà chỉ được viết thêm các dấu cộng (+), bạn có thể cho được kết quả của dãy phép tính là 90 được không ?
Bài giải : Có hai cách điền :
8 + 7 + 65 + 4 + 3 + 2 + 1 = 90
8 + 7 + 6 + 5 + 43 + 21 = 90
Để tìm được hai cách điền này ta có thể có nhận xét sau :
Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.
Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65 ; 65 + 36 - 6 - 5 = 90, ta có thể điền :
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.
Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90.
Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được. Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54. Như vậy ta có thể điền :
8 + 7 + 6 + 5 + 43 + 21 = 90.
Bài 54 : Cho phân số
M = (1 + 2 +... + 9)/(11 + 12 +... +19).
Hãy bớt một số hạng ở tử số và một số hạng ở mẫu số sao cho giá trị phân số không thay đổi.
Tóm tắt bài giải :
M = (1 + 2 +... + 9)/(11 + 12 +... +19) = 45/135 = 1/3 ...  (cây). 
Số cây của lớp 5B là : 
43 - 27 = 16 (cây). 
Số cây của lớp 5B và 5C là : 
27 + 1 = 28 (cây). 
Số cây của lớp 5C là : 
28 - 16 = 12 (cây). 
Số cây của lớp 5A là : 
43 - 28 = 15 (cây). 
Bài 128 : Một dãy có 7 ô vuông gồm 3 ô đen và 4 ô trắng được sắp xếp như hình vẽ. 
Cho phép mỗi lần chọn hai ô tùy ý và đổi màu chúng (từ đen sang trắng và từ trắng sang đen). Hỏi rằng nếu làm như trên nhiều lần thì có thể nhận được dãy ô vuông có màu xen kẽ nhau như sau hay không ? 
Bài giải : Nhìn vào hình vẽ ta thấy ở hình ban đầu có 3 ô đen và 4 ô trắng, còn hình lúc sau có 4 ô đen và 3 ô trắng. 
Khi chọn hai ô tùy ý để đổi màu của chúng (từ đen sang trắng và từ trắng sang đen) thì có ba khả năng xảy ra : 
- Chọn hai ô trắng : Khi đó hai ô trắng được chọn sẽ đổi thành hai ô đen, do đó số ô đen tăng lên 2 ô. 
- Chọn hai ô đen : Khi đó hai ô đen được chọn sẽ đổi thành hai ô trắng, do đó số ô đen giảm đi 2 ô. 
- Chọn một ô đen và một ô trắng : Khi đó ô trắng đổi thành ô đen và ô đen đổi thành ô trắng, do đó số ô đen giữ nguyên. 
Do vậy khi thực hiện việc chọn hai ô để đổi màu của chúng thì số lượng ô đen hoặc tăng lên 2 ô, hoặc giảm đi 2 ô, hoặc giữ nguyên. Điều đó có nghĩa là nếu chọn hai ô tùy ý và đổi màu chúng nhiều lần thì số ô đen vẫn luôn luôn là một số lẻ. 
Vì hình sau có 4 ô đen nên không thể thực hiện được. 
Bài 129 : Một tờ giấy hình chữ nhật được gấp theo đường chéo như hình vẽ. Diện tích hình nhận được bằng 5/8 diện tích hình chữ nhật ban đầu. Biết diện tích phần tô màu là 18 cm2. Tính diện tích tờ giấy ban đầu. 
Bài giải : Khi gấp tờ giấy hình chữ nhật theo đường chéo (đường nét đứt) thì phần hình tam giác được tô màu bị xếp chồng lên nhau. Do đó diện tích hình chữ nhật ban đầu lớn hơn diện tích hình nhận được chính là diện tích tam giác được tô màu. 
Diện tích hình chữ nhật ban đầu giảm đi bằng 1 - 5/8 = 3/8 diện tích hình chữ nhật ban đầu. 
Do vậy diện tích tam giác tô màu bằng 3/8 diện tích hình chữ nhật ban đầu, hay 3/8 diện tích hình chữ nhật ban đầu bằng 18 cm2. 
Vậy diện tích hình chữ nhật ban đầu là : 
18 : 3/8 = 48 (cm2) 
Bài 130. Chứng tỏ rằng kết quả của phép nhân sau 
3 x 3 x 3 x ... x 3 
(2000 thừa số 3) là số có ít hơn 1001 chữ số. 
Lời giải. Trong tích số A = 3 x 3 x 3 x ... x 3 gồm 2000 thừa số 3, kết hợp từng cặp số 3 được A = (3 x 3) (3 x 3) ... (3 x 3) = 9 x 9 x ... x 9 gồm 1000 thừa số 9. 
Xét số B = 9 x 10 x ...x 10 thừa số 10 nên số B = 90...0 có 999 chữ số 0 và 1 chữ số 9, nghĩa là có 1000 chữ số. 
Vì 9 < 10 nên A = 9 x 9 x ... x 9 < B = 9 x10 x ... x 10 
Vậy số A có ít hơn 1001 chữ số. 
Bài 131. Tính diện tích hình chữ nhật ABCD. Biết rằng diện tích phần màu vàng là 20cm2 và I là điểm chia AB thành 2 phần bằng nhau. 
Lời giải. Kí hiệu S là diện tích của một hình. Nối D với I. Qua I và C vẽ các đường thẳng IP và CQ vuông góc với BD, IH vuông góc với DC. 
Ta có SADB = SCDB = 1/2 SABCD SDIB = 1/2 SADB (vì có chung đường cao DA, IB = 1/2 AB), SDIB = 1/2 SDBC. 
Mà 2 tam giác này có chung đáy DB 
Nên IP = 1/2 CQ. SIDK = 1/2 SCDK (vì có chung đáy DK và IP = 1/2 CQ) SCDI = SIDK + SDKC = 3SDIK. 
Ta có : 
SADI = 1/2 AD x AI, SDIC = 1/2 IH x DC 
Mà IH = AD, AI = 1/2 DC, SDIC = 2SADI nên SADI = 3/2 SDIK 
Vì AIKD là phần được tô màu vàng nên SAIKD = 20(cm2) 
SDAI + SIDK = 20(cm2) 
SDAI + 2/3 SADI = 20(cm2) 
SDAI = (3 x 20)/5 = 12 (cm2) 
Mặt khác SDAI = 1/2 SDAB (cùng chung chiều cao DA, AI = 1/2 AB) 
= 1/4 SABCD suy ra SABCD = 4 x SDAI = 4 x 12 = 48 (cm2). 
Bài 132. Nếu trong một tháng nào đó mà có 3 ngày thứ bảy đều là các ngày chẵn thì ngày 25 của tháng đó sẽ là ngày thứ mấy ? 
Lời giải. 
Cách 1. Trong một tháng nào đó có ba ngày thứ bảy là ngày chẵn thì chắc chắn còn có hai ngày thứ Bảy là ngày lẻ. Năm ngày thứ Bảy đó sắp xếp như sau : 
Thứ Bảy (1) chẵn
Thứ Bảy (2)   lẻ
Thứ Bảy (3) chắn
Thứ Bảy (4)   lẻ
Thứ Bảy (5) chẵn
Số ngày nhiều nhất trong một tháng là 31 ngày. Tháng này có 4 tuần và 3 ngày. Nếu thứ bảy đầu tiên là ngày mùng 4 thì tháng đó sẽ có số ngày là: 4 + 7 x 4 = 32 (ngày) ; trái với lịch thông thường. 
Vì thế thứ bảy đầu tiên (1) phải là ngày mùng 2 ; thứ 7 thứ tư sẽ là ngày: 2 + 7 x 3 = 23 
Vậy ngày 25 của tháng đó là ngày thứ hai. 
Cách 2. Lập bảng theo tuần lễ : 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Trong 3 cột đầu tiên chỉ có cột 2 thích hợp với đầu bài toán. Cột này có 5 ngày thứ bảy. Vì ngày 23 là thứ bảy, nên ngày 25 là thứ hai. 
Bài 133. Bốn bạn Xuân, Hạ, Thu, Đông có tất cả 61 viên bi. Xuân có số bi ít nhất, Đông có số bi nhiều nhất và là số lẻ, Thu có số bi gấp 9 lần số bi của Hạ. Hãy cho biết mỗi bạn có bao nhiêu viên bi ?
Lời giải. 
+ Số bi của Thu gấp 9 lần số bi của Hạ nên tổng số bi của Thu và Hạ là một số chẵn. Tống số bi của bốn bạn là số lẻ, số bi của Đông là số lẻ, tổng số bi của Hạ và Thu là số lẻ ; do đó số bi của Xuân phải là số chẵn. 
+ Số bi của Hạ phải là số bé hơn 4 vì nếu số đó là 4 thì số bi của Thu là 4 x 9 = 36. Khi đó ít nhất Đông có số bi là 37 thì chỉ riêng tổng số bi của Thu và Đông đã vượt quá tổng số bi của bốn bạn (36 + 37 = 73 > 61). 
+ Nếu số bi của Xuân là 2 thì số bi của Hạ là 3, số bi của Thu là 27 
(3 x 9 = 27) 
Số bi của Đông là : 
61 - (2 + 3 + 27) = 29 (viên). 
Bài 134. Thay các chữ cái dưới đây bởi các chữ số (chữ cái khác nhau thì thay bởi các chữ số khác nhau) sao cho kết quả các phép tính dưới đây đạt giá trị lớn nhất. 
CHUC + MUNG + THAY + CO + NHAN + NGAY - 20 - 11
Lời giải. Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0. 
Vậy ta có 2 đáp số : 
8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461 
Bài 135 : Thăng đố Long biết được số học sinh của trường Thăng cuối năm học vừa rồi có bao nhiêu học sinh được nhận thưởng ? Biết rằng số học sinh được nhận thưởng là số có ba chữ số và rất thú vị là chữ số hàng trăm, chữ số hàng đơn vị giống nhau. Nếu nhân số này với 6 thì được tích là số cũng có ba chữ số và trong tích đó có một chữ số 2.
Bài giải : Gọi số phi tìm là aba(a khác b;a ; b nhỏ hoặc bằng 9). Theo đầu bài ta có:
aba x 6 = deg (d khác 0 ; d; e; g nhỏ hơn hoặc bằng 9).
Nếu a lớn hơn hoặc bằng 2 thì tích nhiều hơn 3 chữ số.Vậy a = 1. Ta có 1b1x 6 = deg ( deg có một chữ số 2).
Do đó : g = 1 x 6 = 6 và d lớn hơn hoặc bằng 6. Vì thế : e = 2
Vì b x 6 = nên b = 2 hoặc b = 7.
Nếu b = 2 thì 121 x 6 = 726 (Đúng) 
Nếu b = 7 thì 171 x 6 = 1026 (Loại)
Vậy số học sịnh nhận thưởng là 121 bạn.
Bài 136 : Em hãy di chuyển hai que diêm lại đúng vị trí để kết quả phép tính là đúng :
Bài giải :
Cách 1 : Ta chuyển que diêm ở giữa chữ số 8 để có chữ số 0. Lấy que diêm đó 
ghép vào chữ số 5 của số 502 để được số 602. Lấy 1 que diêm ở chữ số 3 của số 2003 và đặt vào vị trí khác của chữ số 3 đó để chuyển số 2003 thành số 2002, ta có phép tính đúng :
Cách 2 : Ta chuyển que diêm ở giữa số 8 để có chữ số 0. lấy que diêm đó ghép vào chữ số 5 của số 502 để được số 602.
Lấy 1 que diêm ở chữ số 2 của số 602 và đặt vào vị trí khác của chữ số 2 đó để chuyển số 602 thành số 603, ta có phép tính đúng :
Bài 137 : Một bạn chọn hai số tự nhiên tuỳ ý, tính tổng của chúng rồi lấy tổng đó nhân với chính nó. Bạn ấy cũng làm tưng tự đối với hiệu của hai số mà mình đã chọn đó. Cuối cùng cộng hai tích tìm được với nhau. Hỏi rằng tổng của hai tích đó là số chẵn hay số lẻ ? Vì sao ?
Bài giải : Sẽ xảy ra một trong hai trường hợp : C hai số đều chẵn (hoặc đều lẻ) ; một số chẵn và một số lẻ.
a) Hai số chẵn (hoặc hai số lẻ). Tổng, hiệu của hai số đó là số chẵn. Số chẵn nhân với chính nó được số chẵn. Do đó cộng hai tích (là hai số chẵn) phải được số chẵn.
b) Một số chẵn và một số lẻ. Tổng, hiệu của chúng đều là số lẻ. Số lẻ nhân với chính nó được số lẻ. Do đó cộng hai tích (là hai số lẻ) phải được số chẵn.
Vậy theo điều kiện của bài toán thì kết quả của bài toán phải là số chẵn.
Bài 138 : a) Hãy phân tích 20 thành tổng các số tự nhiên sao cho tích các số tự nhiên ấy cũng bằng 20.
b) Bạn có thể làm như thế với bất kì số tự nhiên nào được không ?
Bài giải : Phân tích 20 thành tích các số tự nhiên khác 1.
20 = 2 x 2 x 5 = 4 x 5 = 10 x 2 
Trường hợp : 2 x 2 x 5 = 20 thì tổng của chúng là : 2+ 2 + 5 = 9. Vậy để tổng bằng 20 thì phải thêm vào : 20 - 9 = 11, ta thay 11 bằng tổng của 11 số 1 khi đó tích sẽ không thay đổi. 
Lí luận tương tự với các trường hợp : 20 = 4 x 5 và 20 = 10 x 2. Ta có 3 cách phân tích như sau :
Cách 1 :
20 = 2 x 2 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 2 + 2 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 2 :
20 = 4 x 5 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 4 + 5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Cách 3 :
20 = 10 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1.
20 = 10 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1. 
b) Một số chia hết cho 1 và chính nó sẽ không làm được như trên vì tích của 1với chính nó luôn nhỏ hơn tổng của 1 với chính nó.
Bài 139 : Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1, chia cho 5 dư 1, chia cho 7 dư 3 và chia hết cho 9.
Bài giải : Vì a chia cho 2 dư 1 nên a là số lẻ.
Vì a chia cho 5 dư 1 nên a có tận cùng là 1 hoặc 6.
Do đó a phải có tận cùng là 1.
- Nếu a là số có hai chữ số thì do a chia hết cho 9 nên a = 81, loại vì 81 : 7 = 11 dư 4 (trái với điều kiện của đề bài).
- Nếu a là số có ba chữ số thì để a nhỏ nhất thì chữ số hàng trăm phải là 1. Khi đó để a chia hết cho 9 thì theo dấu hiệu chia hết cho 9 ta có chữ số hàng chục phi là 7 (để 1 + 7 + 1 = 9 9).
Vì 171 : 7 = 24 dư 3 nên a = 171.
Vậy số phải tìm nhỏ nhất thỏa mãn điều kiện của đề bài là 171.
Bài 140 : Số này nằm trong phạm vi các số tự nhiên từ 1 đến 58. Khi viết "nó" không sử dụng các chữ số 1 ; 2 ; 3. Ngoài ra "nó" là số lẻ và không chia hết cho các số 3 ; 5 ; 7. Vậy "nó" là số nào ?
Bài giải : Nó là số lẻ nằm trong phạm vi các số tự nhiên từ 1 đến 58, khi viết nó không sử dụng các chữ số 1 ; 2 ; 3 nên nó có thể là : 5 ; 7 ; 9 ; 45 ; 47 ; 49 ; 55 ; 57 ; 59.
Nhưng nó không chia hết cho 3 ; 5 ; 7 nên trong các số trên chỉ có số 47 là thỏa mãn.
Vậy nó là số 47.

Tài liệu đính kèm:

  • docb 100.doc